
www.allitebooks.com

http://www.allitebooks.org

Learning Linux Shell Scripting

Unleash the power of Shell scripts to solve real-world
problems by breaking through the practice of writing
tedious code

Ganesh Sanjiv Naik

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Linux Shell Scripting

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015

Production reference: 1211215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-621-6

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Ganesh Sanjiv Naik

Reviewers
Advait Deo

Eax Melanhovich

Shawn Solomon

Commissioning Editor
Nadeem Bagban

Acquisition Editor
Tushar Gupta

Content Development Editor
Nikhil Potdukhe

Technical Editor
Rupali R. Shrawane

Copy Editor
Charlotte Carneiro

Project Coordinator
Izzat Contractor

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Author

Ganesh Sanjiv Naik is an author, consultant, and corporate trainer for embedded
Android, embedded Linux, and Internet of Things related product development.

He completed his computer engineering in 1988. Since then, he has worked in this
industry. He has worked on projects including micro-controller based projects to
advanced Embedded Android projects. He has more than 20 years of professional
experience and project accomplishment in information technology.

Ganesh has a passion and deep desire for teaching. He has trained 1,000 engineers
in Linux and Android product development. He has developed a lot of training
material as well as curriculum for various universities and training institutes.

He has an interest in spiritual study and practices such as meditation. He is a certified
yoga teacher. His hobbies include yoga and martial arts.

He has worked as a corporate trainer for Indian Space Research Organization,
Intel, GE, Samsung, Motorola, Penang Skill Development Center (Malaysia),
various companies in Singapore as well as various other corporates in India and
other countries. He has started a company called Levana Technologies, which
works with the Penang Skill Development Center (Malaysia) for consulting and
training activities. If you would like to send feedback, suggestions, or corrections
in the book, he can be contacted at https://in.linkedin.com/in/naikganesh.

This book is his real-life experience….

www.allitebooks.com

http://www.allitebooks.org

He has worked as a consultant and corporate trainer in the following skills:

• Internet of Things
• Embedded Android, Android internals, and device driver development
• USB and PCI device driver development in Linux
• Embedded Linux and device driver development
• Unix Shell scripting with sed and awk
• Embedded C++ and C programming
• Operating systems, software engineering, and networking
• Problem solving—analysis, reasoning, and solution techniques for

software engineers

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

I would like to thank my wife, Vishalakshi, for putting up with my late night writing
sessions. Even though Vishalakshi is from microbiology background, on my request,
she proofed all the chapters to spot language shortcomings. She patiently read my
complete book, and even after not being a programmer, she gave me many valuable
suggestions. Without her support and continuous motivation, this book would not
have been possible. My professional friend, Kuldeep Vaity, has also read all chapters
from a developer's perspective. His feedback was very valuable from technical
angles, such as unclear code, insufficient explanation, and similar.

I feel proud to say that the book's cover picture was designed by my daughter,
Roopali. She conceptualized the theme and took a lot of effort to properly convey
the meaning of the book to readers.

My special thanks to the technical reviewers of the book. Their valuable suggestions
have helped me add value to this book.

I would like to thank the entire Packt Publishing team. I would especially like
to thank, Aditya Nair and Nikhil Potdukhe of Packt Publishing for the positive,
motivating support given to me during the initial period to the end of the
completion of this book. Nikhil was very helpful and patient in following up with
me for chapters. Due to my busy schedule of consulting and training activities, I
was not able to complete my chapters as per schedule; but Nikhil used to follow up
very nicely, understandingly, and patiently for the chapter's completion. Without
his patient follow up, either I would have completed this book very late, or I would
have left the writing work incomplete.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Advait Deo has more than 10 years of experience in database domain, has spent
time on many aspects of databases until now, starting from Oracle version 8 until
12c. He mainly focuses on database performance tuning, integrating database with
front end application, scripting, and automation. He is currently working as a senior
database administrator for (world leader in retail business).

Prior to this book, Advait has reviewed Oracle Database 11g R2 Performance Tuning
Cookbook, Packt Publishing (ISBN 1849682607). He also publishes some of his work
and learnings on his website at http://avdeo.com.

Eax Melanhovich is 27 and lives in Moscow, Russia. Most people don't know
his real name or where he works since Eax is concerned about his privacy. Eax is
an author of probably the most popular Russian standalone technical blog eax.me.
He is also one of the co-hosts of the popular Russian IT podcast devzen.ru. Eax is
an Ubuntu user and a functional programming enthusiast.

Shawn Solomon is a technology veteran with a broad background of experience
from more than 20 years of pioneering in various technologies. While working in the
ISP, VoIP, educational, open source development, and disaster recovery fields, his
skillset has adapted and broadened over the years.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

I wish to dedicate this book to my Gurudev His Holiness Dr. Jayant Balaji
Athavale. I wish to express gratitude for his guidance, which I have received for,
how to become good human being, good professional and a seeker on the path of

spiritual progress.

 - Ganesh Sanjiv Naik

[i]

Table of Contents
Preface ix
Chapter 1: Getting Started and Working with Shell Scripting 1

Comparison of shells 2
Tasks done by shell 3
Working in shell 3
Learning basic Linux commands 4
Our first script – Hello World 5
Compiler and interpreter – difference in process 7
When not to use scripts 7
Various directories 8
Working more effectively with shell – basic commands 9
Working with permissions 13

Changing file permissions 13
Command chmod 14

Technique one – the symbolic method 14
Technique two – the numeric method 14

Setting umask 14
Setuid 15
Setgid 15
Sticky bit 15

Summary 16
Chapter 2: Drilling Deep into Process Management,
Job Control, and Automation 17

Introducing process basics 17
Monitoring processes using ps 19
Process management 23
Process monitoring tools – top, iostat, and vmstat 26
Understanding "at" 29

Table of Contents

[ii]

Understanding "crontab" 30
Summary 32

Chapter 3: Using Text Processing and Filters in Your Scripts 33
Text filtering tools 33

Head and tail 34
The diff command 35
The cut command 36
The paste command 37
The join command 37
The uniq command 38
The comm command 39
The tr command 40

IO redirection 41
File descriptors 41
Redirection 41
Brace expansion 45

Pattern matching with the vi editor 46
Pattern searching using grep 48
Summary 51

Chapter 4: Working with Commands 53
Learning shell interpretation of commands 53

Checking and disabling shell internal commands 55
The exit status 56

Command substitution 57
Command separators 59

Command1; command2 59
Command grouping 60

Logical operators 61
Command1 & command2 61
Command1 && command2 61
Command1 || command2 61

Pipes 63
Summary 63

Chapter 5: Exploring Expressions and Variables 65
Understanding variables 65
Working with environment variables 68

The local variable and its scope 70
Exporting variables 71

Table of Contents

[iii]

Working with read-only variables 74
Working with command line arguments (special variables,
set and shift, getopt) 74

Understanding set 76
Understanding shift 79

Resetting positional parameters 81
Understanding getopts 81
Understanding default parameters 83
Working with arrays 84

Creating an array and initializing it 84
Accessing array values 85

Summary 87
Chapter 6: Neat Tricks with Shell Scripting 89

Interactive Shell scripts – reading user input 89
Summarizing the read command with options 92

The here document and the << operator 92
The here operator with the sort command 93
The here operator with the wc command 94
The utility ed and here operator 95
A script for sending messages to all logged-in users 96
Using the << here operator for FTP usage and data transfer 96

Turning off variable substitution 97
The here string and the <<< operator 98
File handling 98

Introducing file handling 99
Using exec to assign file descriptor (fd) to file 99

Understanding the opening, writing, and closing of a file 99
Understanding reading from a file 100
Understanding reading and writing to a file 101
Using command read on file descriptor (fd) 101
Reading from one file and writing to another file 101

Displaying the file descriptor information from the /proc folder 103
File handling – reading line by line 104
Executing the command and storing the results in a file 104

Summarizing usage of the exec command 105
Debugging 105

Debugging mode – disabling the shell (option -n) 106
Debugging mode – displaying commands (option -v) 107
Debugging mode – the tracing execution (option -x) 109

Summarizing the debugging options for the Bash shell 112

Table of Contents

[iv]

Using the set command 112
Summary of debugging options for set command 113
The vi editor setting for debugging 113

Good practices for Shell scripts 114
Summary 115

Chapter 7: Performing Arithmetic Operations in Shell Scripts 117
Using a command declare for arithmetic 117

Listing integers 119
Using the let command for arithmetic 120
Using the expr command for arithmetic 122

Using an arithmetic expansion 124
Binary, octal, and hex arithmetic operations 128
A floating-point arithmetic 129
Summary 132

Chapter 8: Automating Decision Making in Scripts 133
Checking the exit status of commands 134
Understanding the test command 135

Using the test command with single brackets 135
Using the test command with double brackets 136
String comparison options for the test command 136
Numerical comparison operators for the test command 138
File test options for the test command 142
File testing binary operators 143
Logical test operators 144

Conditional constructs – if else 145
Numerical handling if constructs 147
Using the command exit and the ? variable 148
String handling with the if construct 149
Checking for null values 151
File handling with the if command 153
Multiple test commands and if constructs 155
The if/elif/else command 158
The null command 160

Switching case 161
Implementing simple menus with select 167
Looping with the for command 172
Exiting from the current loop iteration with the continue command 177
Exiting from a loop with a break 179
Working with the do while loop 181

Table of Contents

[v]

Using until 184
Piping the output of a loop to a Linux command 187
Running loops in the background 188
The IFS and loops 188
Summary 189

Chapter 9: Working with Functions 191
Understanding functions 191

Displaying functions 195
Removing functions 196

Passing arguments or parameters to functions 196
Sharing the data by many functions 200
Declaring local variables in functions 200
Returning information from functions 202

Returning a word or string from a function 204
Running functions in the background 204

Command source and period (.) 205
Creating a library of functions 205
Summary 206

Chapter 10: Using Advanced Functionality in Scripts 207
Understanding signals and traps 207
Using the trap command 209
Ignoring signals 210

Resetting signals 210
Listing traps 211

Using traps in function 211
Running scripts or processes even if the user logs out 212
Creating dialog boxes with the dialog utility 213

Creating a message box (msgbox) 214
Creating a message box (msgbox) with a title 214
The yes/no box (yesno) 215
The input box (inputbox) 216
The textbox (textbox) 218
A password box 218
The menu box (menu) 219
The checklist box (checklist) 221
The radiolist box (radiolist) 221
The progress meter box (gauge) 222

Summary 223

Table of Contents

[vi]

Chapter 11: System Startup and Customizing a Linux System 225
System startup, inittab, and run levels 225

The kernel startup and init process 225
Understanding run levels 227
System initialization boot scripts 227

User initialization scripts 229
Systemwide settings scripts 229
User level settings – default files 229

Summary 231
Chapter 12: Pattern Matching and Regular Expressions
with sed and awk 233

The basics of regular expressions 233
sed – noninteractive stream editor 234

Understanding sed 235
Understanding regular expression usage in sed 235
Addressing in sed 236
How to modify a file with sed 237
Printing – the p command 237
Deleting – the d command 238
Substitution – the s command 240
Range of selected lines: the comma 241
Multiple edits – the e command 243
Reading from files – the r command 244
Writing to files – the w command 244
Appending – the a command 245
Inserting – the i command 246
Changing – the c command 247
Transform – the y command 247
Quit – the q command 248
Holding and getting – the h and g commands 249
Holding and exchanging – the h and x commands 249
sed scripting 250

Using awk 252
The meaning of awk 252
Using awk 252
Input from commands 254
How awk works 255
awk commands from within a file 256

Table of Contents

[vii]

Records and fields 257
Records 257
Fields 259
Field separators 259

Patterns and actions 260
Patterns 260
Actions 261

Regular expressions 262
Writing the awk script file 263
Using variables in awk 264
Decision making using an if statement 264
Using the for loop 265
Using the while loop 266
Using the do while loop 266

Summary 267
Index 269

www.allitebooks.com

http://www.allitebooks.org

[ix]

Preface
Shell scripts are an essential part of any modern operating system, such as UNIX,
Linux, Windows, and similar. The scripting language or its syntax may vary from
OS to OS; but the fundamental principles remain the same. I first encountered Linux
Shell scripts during the development of embedded Linux product development. Shell
scripts were initializing the complete product from the basic booting procedure until
users logged in and a complete operating system was initialized. Another situation
was in the automation of regular activities, such as the build and release management
of source codes of very complex products, where more than 10,000 files were a part of
a single project. Similarly, another very common requirement comes while using the
make utility, which is used to compile and build complex product source codes.

Initially, I had learned scripts to solve practical problems and customize already
existing products. This book is the summary of what I have learned over the years in
Linux Shell scripting during project development work, consultancy, and corporate
trainings and their Q&A sessions.

In this book, you will learn about the very basics of Shell scripting to complex,
customized automation. By the end of this book, you will be able to confidently
use your own Shell scripts for the real-world problems out there. The idea is to be
as practical as possible and give you the look and feel of what real-world scripting
looks like.

This book covers bash, the GNU Bourne-Again Shell scripting. You can use the
knowledge gained by reading this book for any shell of any of the UNIX flavors or
distributions. You will need to take care of a few syntax changes if you are working
in other shells, such as Korn, and similar. You should be able to read this book cover
to cover, or you can just pick it up and read anything that you might find interesting.
But perhaps most importantly, if you have a question about how to solve a particular
problem or you need a hint, you will find it easy to find the right solution or
something close enough to save your time and energy.

Preface

[x]

What this book covers
Chapter 1, Getting Started and Working with Shell Scripting, you will learn different ways
to write and run Shell scripts. You will also learn ways to handle files and directories,
and you will learn about working with permissions.

Chapter 2, Drilling Deep into Process Management, Job Control, and Automation, you will
learn about basic process management. You will learn about command ps and job
management using commands such as jobs, fg, bg, kill, and pkill. Later on, you will
learn about process monitoring tools: top, iostat, vmstat and sar.

Chapter 3, Using Text Processing and Filters in Your Scripts, you will learn about using
more, less, head, and tail commands. You will also learn text processing tools such
as, cut, paste, comm, and uniq. You will learn about standard input, output, and
error. Later on, you will learn about metacharacters and pattern matching using
vi and grep.

Chapter 4, Working with Commands, you will learn about how shell interprets any
command entered on the command line. You will also learn command substitution,
separators, and pipes in detail.

Chapter 5, Exploring Expressions and Variables, you will learn about variables—
environment variables. This will include how to export environment variables,
set, shift, read-only variables, command-line arguments, and about creating and
handling arrays.

Chapter 6, Neat Tricks with Shell Scripting, you will learn about debugging, the here
operator, interactive Shell scripts for taking input from the keyboard, and file handling.

Chapter 7, Performing Arithmetic in Shell Scripts, you will learn about doing arithmetic
operations in various ways, such as using declare, let, expr, and arithmetic expressions.
You will also learn about representing numbers in different bases, such as hex,
octal, and binary. You will learn about using the bc utility for doing floating point or
fractional arithmetic.

Chapter 8, Automating Decision Making in Scripts, you will learn about using decision
making in scripts working with test, if…else, and switching case. You will also use
select for loop with menu. For repeating tasks such as processing lists, you will learn
about using for loop, while loop and do while. You will also learn about how to
control loops using break and continue statements.

Preface

[xi]

Chapter 9, Working with Functions, we will understand about functions in Shell scripts.
You will learn about the definition and display of functions by removing the function
from the shell. You will also learn about passing arguments to functions, sharing
data between functions, declaring local variables in functions, returning results from
functions, and running functions in background. You will finally learn about using
source and . commands. We will use these commands to use the library of functions.

Chapter 10, Using Advanced Functionality in Scripts, you will learn about using
traps and signals. You will also learn about creating menus with the help of the
dialog utility.

Chapter 11, System Startup and Customizing a Linux System, you will learn about
Linux system startup from power on until the user login and how to customize
a Linux system environment.

Chapter 12, Pattern Matching and Regular Expressions with sed and awk, you will learn
about regular expressions and using sed (stream editor) and awk for text processing.
You will learn about the usage of various commands and options along with a lot of
examples for using sed and awk.

What you need for this book
Any computer that has Linux OS installed on it will be sufficient for learning all the
topics discussed in this book. I have personally tested all the commands and scripts
in Ubuntu 12.10 distribution.

While learning, if you find that any utility has not installed alongside Ubuntu or any
Debian-based distribution, then enter the following command to install this utility:

$ sudo apt-get update

$ sudo apt-get install package-name

The Internet should be available for the previous commands to run.

In Red Hat or any other rpm-based distribution, enter the following commands:

$ sudo yum update

$ sudo yum install package-name

If the Internet is connected, then using these commands, you can install any command
or utility that is not already installed.

Preface

[xii]

Who this book is for
This book is for the readers that are proficient at working with Linux, and who
want to learn about Shell scripting to improve their efficiency and practical skills.
The following are a few examples where we can use skills learned in this book:

• Shell scripting is for automating tasks such as taking a periodic backup
• Systems administration
• Database maintenance and backup
• Test processing and report generation
• The customization of system initialization

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"In the output, 4d3 tells us that line number 4 is deleted in file2. Similarly, the
change command will show us changes in the file as well."

A block of code is set as follows:

#!/bin/bash
This is comment line
echo "Hello World"
ls
date

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

$ expr 4 * 10
expr: syntax error
With command expr, we cannot use * for multiplication. We need to use
* for multiplication.
$ expr "4 * 10"
4 * 10
$ expr 4 * 10
40

Preface

[xiii]

Any command-line input or output is written as follows:

$ sed '1,3d' datafile > tempfile

$ awk -F: '/Marie/{print $1, $2}' people1.txt

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/LearningLinuxShellScripting_
ColorImages.pdf.

Preface

[xiv]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Getting Started and Working
with Shell Scripting

Whoever works with Linux will come across shell as the first program to work with.
The Graphical user interface (GUI) usage has become very popular due to the ease
of use. Those who want to take advantage of the power of Linux will use the shell
program by default.

Shell is a program which provides the user direct interaction with the operating
system. Let's understand the stages in the evolution of the Linux operating system.
Linux was developed as a free and open source substitute for UNIX OS. The
chronology can be as follows:

• The UNIX operating system was developed by Ken Thomson and Dennis
Ritchie in 1969. It was released in 1970. They rewrote the UNIX using
C language in 1972.

• In 1991, Linus Torvalds developed the Linux kernel for the free
operating system.

In this chapter, we will cover the following topics:

• Comparison of shells
• Working in shell
• Learning basic Linux commands
• Our first script—Hello World
• Compiler and interpreter—difference in process
• When not to use scripts
• Various directories
• Working more effectively with shell—basic commands
• Working with permissions

Getting Started and Working with Shell Scripting

[2]

Comparison of shells
Initially, the UNIX OS used a shell program called Bourne Shell. Then eventually,
many more shell programs were developed for different flavors of UNIX. The
following is brief information about different shells:

• Sh—Bourne Shell
• Csh—C Shell
• Ksh—Korn Shell
• Tcsh—enhanced C Shell
• Bash—GNU Bourne Again Shell
• Zsh—extension to Bash, Ksh, and Tcsh
• Pdksh—extension to KSH

A brief comparison of various shells is presented in the following table:

Feature Bourne C TC Korn Bash
Aliases no yes yes yes yes
Command-line editing no no yes yes yes
Advanced pattern matching no no no yes yes
Filename completion no yes yes yes yes
Directory stacks (pushd and popd) no yes yes no yes
History no yes yes yes yes
Functions yes no no yes yes
Key binding no no yes no yes
Job control no yes yes yes yes
Spelling correction no no yes no yes
Prompt formatting no no yes no yes

What we see here is that, generally, the syntax of all these shells is 95% similar.
In this book, we are going to follow Bash shell programming.

Chapter 1

[3]

Tasks done by shell
Whenever we type any text in the shell terminal, it is the responsibility of shell to
execute the command properly. The activities done by shell are as follows:

• Reading text and parsing the entered command
• Evaluating metacharacters such as wildcards, special characters,

or history characters
• Process io-redirection, pipes, and background processing
• Signal handling
• Initializing programs for execution

We will discuss the preceding topics in the subsequent chapters.

Working in shell
Let's get started by opening the terminal, and we will familiarize ourselves with the
Bash Shell environment:

1. Open the Linux terminal and type in:
$ echo $SHELL

/bin/bash

2. The preceding output in terminal says that the current shell is /bin/bash
such as BASH shell:
$ bash --version

GNU bash, version 2.05.0(1)-release (i386-redhat-linux-gnu)

Copyright 2000 Free Software Foundation, Inc.

Hereafter, we will use the word Shell to signify the BASH shell only. If we intend any
other shell, then it will be specifically mentioned by name such as KORN and similar
other shells.

In Linux, filenames in lowercase and uppercase are different; for example, the files
Hello and hello are two distinct files. This is unlike Windows, where case does
not matter.

As far as possible, avoid using spaces in filenames or directory names such as:

• Wrong file name—Hello World.txt

• Correct file name—Hello_World.txt or HelloWorld.txt

www.allitebooks.com

http://www.allitebooks.org

Getting Started and Working with Shell Scripting

[4]

This will make certain utilities or commands fail or not work as expected, for
example, the make utility.

While typing in filenames or directory names of the existing files or folders, use the
tab completion feature of Linux. This will make working with Linux faster.

Learning basic Linux commands
The following table lists a few basic Linux commands:

Command Description
$ ls This command is used to check the contents of

the directory.
$ pwd This command is used to check the present

working directory.
$ mkdir work We will work in a separate directory called

work in our home directory. Use this command
to create a new directory called work in the
current folder.

$ cd work This command will change our working
directory to the newly created directory work.

$ pwd This command can be used to verify whether
we moved to the expected directory.

$ touch hello.sh This command is used to create a new empty
file called hello.sh in the current folder.

$ cp hello.sh bye.sh This command is used to copy one file into
another file.
This will copy hello.sh as bye.sh.

$ mv bye.sh welcome.sh This command is used to rename a file. This
will rename bye.sh as welcome.sh.

$ ll This command will display detailed
information about files.

$ mv welcome.sh .welcome.sh

$ ls

Let's see some magic. Rename the file using the
mv command and the run the ls command.
Now, the ls command will not display our
file .welcome.sh. That file gets hidden. Any
filename or directory name starting with "."
(dot) becomes hidden.

$ ls -a This command is used to see hidden files.
$ rm .welcolme.sh This command is used to delete the file.

Chapter 1

[5]

If we delete any file from GUI such as Graphical User Interface, then it
will be moved to the /home/user/.local/share/Trash/files/
all deleted files folder.

Our first script – Hello World
Since we learned basic commands to use Linux OS, we will now write our first Shell
script called hello.sh. You can use any editor of your choice such as vi, gedit, nano,
and other similar editors. I prefer to use the vi editor.

1. Create a new hello.sh file as follows:
#!/bin/bash

This is comment line

echo "Hello World"

ls

date

2. Save the newly created file.

The #!/bin/bash line is called the shebang line. The combination of the characters #
and ! is called the magic number. The shell uses this to call the intended shell such as
/bin/bash in this case. This should always be the first line in a Shell script.

The next few lines in the Shell script are self explanatory.

• Any line starting with #, will be treated as a comment line. An exception to
this would be the first line with #!/bin/bash

• The echo command will print Hello World on the screen
• The ls command will display directory content on the console
• The date command will show the current date and time

We can execute the newly created file by the following commands:

• Technique one:
$ bash hello.sh

• Technique two:
$ chmod +x hello.sh

Getting Started and Working with Shell Scripting

[6]

By running any of the preceding commands, we are adding executable permission
to our newly created file. You will learn more about file permissions in later in this
same chapter.

$./hello.sh

By running the preceding command, we are executing hello.sh as the executable
file. By technique one, we passed filename as an argument to Bash shell.

The output of executing hello.sh will be as follows:

Hello World

hello.sh

Sun Jan 18 22:53:06 IST 2015

Since we have successfully executed our first script, we will proceed to develop a
more advanced script, hello1.sh. Please create the new script hello.sh as follows:

#!/bin/bash

This is the first Bash shell

Scriptname : Hello1.sh

Written by: Ganesh Naik

echo "Hello $LOGNAME, Have a nice day !"

echo "Your are working in directory `pwd`."

echo "You are working on a machine called `uname -n`."

echo "List of files in your directory is."

ls # List files in the present working directory

echo "Bye for now $LOGNAME. The time is `date +%T`!"

The output of executing hello.sh will be as follows:

Hello student, Have a nice day !.

Your are working in directory /home/student/work.

You are working on a machine called ubuntu.

List of files in your directory is.

hello1.sh hello.sh

Bye for now student. The time is 22:59:03!

You will learn about the LOGNAME, uname, and other similar commands as we go on
with the book.

Chapter 1

[7]

Compiler and interpreter – difference
in process
In any program development, the following are the two options:

• Compilation: Using a compiler-based language such as C, C++, Java, and
other similar languages

• Interpreter: Using interpreter-based languages such as Bash Shell scripting.

When we use a compiler-based language, we compile the complete source code, and
as a result of compilation, we get a binary executable file. We then execute the binary
to check the performance of our program.

On the contrary, when we develop the Shell script, such as an interpreter-based
program, every line of the program is input to Bash shell. The lines of Shell script are
executed one by one sequentially. Even if the second line of a script has an error, the
first line will be executed by the shell interpreter.

When not to use scripts
Shell scripts have certain advantages over compiler-based programs, such as C or
C++ language. However, Shell scripting has certain limitations as well.

The following are the advantages:

• Scripts are easy to write
• Scripts are quick to start and easy for debugging
• They save the time of development.
• Tasks of administration are automated
• No additional setup or tools are required for developing or testing

Shell script

The following are the limitations of Shell scripts:

• Every line in Shell script creates a new process in the operating system.
When we execute the compiled program such as C program, it runs as a
single process for the complete program.

• Since every command creates a new process, Shell scripts are slow as
compared to compiled programs.

• Shell scripts are not suitable if heavy math operations are involved.

Getting Started and Working with Shell Scripting

[8]

• There are Problems with cross-platform portability.
• We cannot use Shell scripts in the following situations when:

 ° Extensive file operations are required
 ° We need data structures, such as linked lists or trees
 ° We need to generate or manipulate graphics or GUIs
 ° We need direct access to system hardware
 ° We need a port or socket I/O
 ° We need to use libraries or interface with legacy code
 ° Proprietary, closed source applications are used (Shell scripts put

the source code right out in the open for the entire world to see)

Various directories
We will explore the directory structure in Linux so that it will be useful later on:

• /bin/: This contains commands used by a regular user.
• /boot/: The files required for the operating system startup are stored here.
• /cdrom/: When CD-ROM is mounted, the CD-ROM files are accessible here.
• /dev/: The device driver files are stored in this folder. These device driver

files will point to hardware-related programs running in kernel.
• /etc/: This folder contains configuration files and startup scripts.
• /home/: This folder contains a home folder of all users except the administrator.
• /lib/: The library files are stored in this folder.
• /media/: External media such as a USB pen drive is mounted in this folder.
• /opt/: The optional packages are installed in this folder.
• /proc/: This contains files which give information about kernel and every

process running in OS.
• /root/: This is the administrators home folder.
• /sbin/: This contains commands used by the administrator or root user.
• /usr/: This contains secondary programs, libraries, and documentation

about user-related programs.
• /var/: This contains variable data such as http, tftp, and similar other.
• /sys/: This dynamically creates the sys files

Chapter 1

[9]

Working more effectively with
shell – basic commands
Let us learn a few commands, which are required very often, such as man, echo, cat
and similar:

• Enter the following command. It will show the various types of manual
pages displayed by the man command:
$ man man

From the following table, you can get an idea about various types of man
pages for the same command:

Section number Subject area
1 User commands
2 System calls
3 Library calls
4 Special files
5 File formats
6 Games
7 Miscellaneous
8 System admin
9 Kernel routines

• We can enter the man command to display corresponding manual pages
as follows:
$ man 1 command

$ man 5 command

• Suppose we need to know more about the passwd command, which is used
for changing the current password of a user, you can type the command
as follows:
$ man command

 man -k passwd // show all pages with keyword

 man –K passwd // will search all manual pages for pattern

$ man passwd

Getting Started and Working with Shell Scripting

[10]

This will show information about the passwd command:
$ man 5 passwd

The preceding command will give information about the file passwd, which
is stored in /etc /passwd.

• We can get brief information about the command as follows:
$ whatis passwd

Output:
passwd (1ssl) - compute password hashes

passwd (1) - change user password

passwd (5) - the password file

• Every command we type in the terminal has an executable binary program
file associated with it. We can check the location of a binary file as follows:
$ which passwd

/usr/bin/passwd

The preceding line tells us that the binary file of the passwd command is
located in the /usr/bin/passwd folder.

• We can get complete information about the binary file location as well as
manual page location of any command by following:
$ whereis passwd

The output will be as follows:
passwd: /usr/bin/passwd /etc/passwd /usr/bin/X11/passwd /usr/
share/man/man1/passwd.1.gz /usr/share/man/man1/passwd.1ssl.gz /
usr/share/man/man5/passwd.5.gz

• Change the user login and effective user name:
$ whoami

This command displays the user name of the logged in user:
$ su

The su command (switch user) will make the user as the administrator;
but, you should know the administrators, password. The sudo command
(superuser do) will run the command with administrator's privileges. It is
necessary that the user should have been added in the sudoers list.
who am i

This command will show the effective user who is working at that moment.
exit

Chapter 1

[11]

• Many a times, you might need to create new commands from existing
commands. Sometimes, existing commands have complex options to
remember. In such cases, we can create new commands as follows:
$ alias ll='ls –l'

$ alias copy='cp –rf'

To list all declared aliases, use the following command:
$ alias

To remove an alias, use the following command:
$ unalias copy

• We can check about the operating system details such as UNIX/Linux or the
distribution that is installed by the following command:
$ uname

Output:
Linux

This will display the basic OS information (UNIX name)

• Linux kernel version information will be displayed by the following:
$ uname –r

Output:
3.13.0-32-generic

• To get all the information about a Linux machine, use the following command:
$ uname –a

Output:
Linux ubuntu 3.13.0-32-generic #57~precise1-Ubuntu SMP Tue Jul 15
03:50:54 UTC 2014 i686 i686 i386 GNU/Linux

• The following commands will give you more information about the
distribution of Linux:
$ cat /proc/version // detailed info about distribution

$ cat /etc/*release

lsb_release -a // will tell distribution info for Ubuntu

The command cat is used for reading files and displayed on the
standard output.

Getting Started and Working with Shell Scripting

[12]

• Sometimes, we need to copy a file or directory in many places. In such
situations, instead of copying the original file or directory again and again,
we can create soft links. In Windows, a similar feature is called as creating
a shortcut.
$ ln -s file file_link

• To learn about the type of file, you can use the command file. In Linux,
various types of files exist. Some examples are as follows:

 ° Regular file (-)
 ° Directory (d)
 ° Soft link (l)
 ° Character device driver (c)
 ° Block device driver (b)
 ° Pipe file (p)
 ° Socket file (s)

• We can get information about a file using the following command:
$ file fil_name // show type of file

• Printing some text on the screen for showing results to the user or to ask
details is an essential activity.

 ° The following command will create a new file called file_name
using the cat command:
$ cat > file_name

line 1

line 2

line 3

< Cntrl + D will save the file >

But this is very rarely used, as many powerful editors are already existing,
such as vi or gedit.

 ° The following command will print Hello World on the console.
The echo command is very useful for Shell script writers:
$ echo "Hello World"

 ° The following command will copy the string Hello World to the
hello.c file:
$ echo "Hello World" > hello.c

Chapter 1

[13]

The command echo with > overwrites the content of the file. If
content already exists in the file, it will be deleted and new content
will be added in the file. In a situation, when we need to append the
text to the file, then we can use the echo command as follows:

$ echo "Hello World" >> hello.c will append the text

 ° The following command will display the content of the file on screen:
$ cat hello.c

Working with permissions
The following are the types of permissions:

• Read permission: The user can read or check the content of the file
• Write permission: The user can edit or modify the file
• Execute permission: The user can execute the file

Changing file permissions
The following are the commands for changing the file permissions:

To check the file permission, give the following command:

$ ll file_name

The details of file permissions are as seen in the following image:

Getting Started and Working with Shell Scripting

[14]

In the preceding diagram, as we can see, permissions are grouped in owner-user
and group and other users' permissions. Permissions are of three types such as read,
write, and execute permissions. As per the requirement, we may need to change
permissions of the various files.

Command chmod
We can change the file or directory permissions by the following two ways:

Technique one – the symbolic method
The following command will add the read/write and execute permissions to the file
wherein, u is for user, g is for group, and o is for others:

$ chmod ugo+rwx file_name

Alternatively, you can use the following command:

$ chmod +rwx file_name

Technique two – the numeric method
The following command will change the file permissions using the octal technique:

$ chmod +rwx file_name

The file permission 777 can be understood as 111 111 111, which corresponds
to the rwx.rwx.rwx permissions.

Setting umask
We will see how Linux decides the default permissions of the newly created file
or folder:

$ umask

0002

The meaning of the preceding output is that, if we create a new directory, then from
the permissions of +rwx, the permission 0002 will be subtracted. This means that for
a newly created directory, the permissions will be 775 or rwx rwx r-x. For a newly
created file, the file permissions will be rw- rw- r--. By default, for any newly
created text file, the execute bit will never be set. Therefore, the newly created text
file and directory will have different permissions even though the umask is same.

Chapter 1

[15]

Setuid
Another very interesting functionality is the setuid feature. If the setuid bit is set
for a script, then the script will always run with the owner's privileges irrespective
of which user is running the script. If the administrator wants to run script written
by him by other users, then he can set this bit.

Consider either of the following situations:

$ chmod u+s file_name

$ chmod 4777 file

The file permissions after any of the preceding two commands will be drwsrwxrwx.

Setgid
Similar to setuid, the setgid functionality gives the user the ability to run scripts
with group owner's privileges, even if it is executed by any other user.

$ chmod g+s filename

Alternatively, you can use the following command:

$ chmod 2777 filename

File permissions after any of the preceding two commands will be drwxrwsrwtx.

Sticky bit
Sticky bit is a very interesting functionality. Let's say, in the administration
department there are 10 users. If one folder has been set with sticky bit, then all other
users can copy files to that folder. All users can read the files, but only the owner of
the respective file can edit or delete the file. Other user can only read but not edit or
modify the files if the sticky bit is set.

$ chmod +t filename

Alternatively, you can use the following command:

$ chmod 1777

File permissions after any of the preceding two commands will be drwxrwxrwt.

Getting Started and Working with Shell Scripting

[16]

Summary
In this chapter, you learned different ways to write and run Shell scripts. You also
learned ways to handle files and directories as well as work with permissions.

In the next chapter, you will learn about process management, job control,
and automation.

[17]

Drilling Deep into Process
Management, Job Control,

and Automation
In the last chapter, we introduced ourselves to the Bash shell environment in Linux.
You learned basic commands and wrote your first Shell script as well.

You also learned about process management and job control. This information will
be very useful for system administrators in automation and solving many problems.

In this chapter, we will cover the following topics:

• Monitoring processes with ps
• Job management—working with fg, bg, jobs, and kill
• Exploring at and crontab

Introducing process basics
A running instance of a program is called as process. A program stored in the
hard disk or pen drive is not a process. When that stored program starts executing,
then we say that process has been created and is running.

Let's very briefly understand the Linux operating system boot-up sequence:

1. In PCs, initially the BIOS chip initializes system hardware, such as PCI bus,
display device drivers, and so on.

2. Then the BIOS executes the boot loader program.

Drilling Deep into Process Management, Job Control, and Automation

[18]

3. The boot loader program then copies kernel in memory, and after basic
checks, it calls a kernel function called start_kenel().

4. The kernel then initiates the OS and creates the first process called init.
5. You can check the presence of this process with the following command:

$ ps –ef

6. Every process in the OS has one numerical identification associated with it.
It is called a process ID. The process ID of the init process is 1. This process
is the parent process of all user space processes.

7. In the OS, every new process is created by a system call called fork().
8. Therefore, every process has a process ID as well as the parent process ID.
9. We can see the complete process tree using the following command:

$ pstree

You can see the very first process as init as well as all other processes with a
complete parent and child relation between them. If we use the $ps –ef command,
then we can see that the init process is owned by root and its parent process ID is 0.
This means that there is no parent for init:

Therefore, except the init process, all other processes are created by some other
process. The init process is created by the kernel itself.

Chapter 2

[19]

The following are the different types of processes:

• Orphan process: If by some chance the parent process is terminated, then
the child process becomes an orphan process. The process which created
the parent process, such as the grandparent process, becomes the parent of
orphan child process. In the last resort, the init process becomes the parent
of the orphan process.

• Zombie process: Every process has one data structure called the process
control table. This is maintained in the operating system. This table contains
the information about all the child processes created by the parent process. If
by chance the parent process is sleeping or is suspended due to some reason
and the child process is terminated, then the parent process cannot receive
the information about the child process termination. In such cases, the child
process that has been terminated is called the zombie process. When the parent
process awakes, it will receive a signal regarding the child process termination
and the process control block data structure will be updated. The child process
termination is then completed.

• Daemon process: Until now, we had started every new process in a Bash
terminal. Therefore, if we print any text with the $ echo "Hello" command,
it will be printed in the terminal itself. There are certain processes that are not
associated with any terminal. Such processes are called a daemon process.
These processes are running in background. An advantage of the daemon
process is they are immune to the changes happening to Bash shell, which
has created it. When we want to run certain background processes, such as
DHCP server and so on, then the daemon processes are very useful.

Monitoring processes using ps
We have used the command ps in the introduction. Let's learn more about it:

• To list the process associated with our current Bash shell terminal, enter the
following command:
$ ps

Drilling Deep into Process Management, Job Control, and Automation

[20]

• To list processes along with the parent process ID associated with the current
terminal, enter the following command:
$ ps –f

We can see the process ID in the PID column and the parent process ID
in the PPID column in the preceding output.

• To list processes with the parent process ID along with the process state,
enter the following command:
$ ps –lf

In the preceding output, the column with S (state) shows the current state of
a process, such as R for running and S for suspended state.

Chapter 2

[21]

• To list all the processes running in the operating system including system
processes, enter the following command:
$ ps –ef

The process names in [] are kernel threads. If you are interested in more
options to learn about the ps command, you can use the following command:
$ man ps.

To find a particular process, you can use the following command:
$ ps –ef | grep "process_name"

The command with grep will display the process with process_name.

Drilling Deep into Process Management, Job Control, and Automation

[22]

• If we want to terminate the running process, enter following command:
$ kill pid_of_process_to_be_killed

• Many a time, if the process is not killed by the $ kill command, you may
need to pass additional option to ensure that the required process is killed,
which is shown as follows:
$ kill -9 pid_of_process_to_be_killed

• We can terminate the process by the name of a process instead of using the
process ID as follows:
$ pkill command_name

$ pkill sleep

Or:
$ pkill -9 command_name

Chapter 2

[23]

• To know more about various flags of kill, enter following command:
$ kill –l

This displays all the signals or software interrupts used by the operating
system. When we enter the $ kill command, the operating system sends the
SIGTERM signal to the process. If the process is not killed by this command,
then we enter the following command:
$ kill -9 process_name

This sends SIGKILL to the process to be killed.

Process management
Since we have understood the command to check processes, we will learn more
about managing different processes as follows:

• In a Bash shell, when we enter any command or start any program, it starts
running in foreground. In such a situation, we cannot run more than one
command in the foreground. We need to create many terminal windows for
starting many processes. If we need to start many processes or programs from
the same terminal, then we will need to start them as background processes.

• If we want to start a process in the background, then we need to append the
command in the Bash shell by &.

• If I want to start my program Hello as the background process, then the
command would be as follows:

• $ Hello &

• If we terminate any command by &, then it starts running as the
background process.

For example, we will issue a simple sleep command, which creates a new process.
This process sleeps for the duration, which is mentioned in the integer value next to
the sleep command:

1. The following used command will make the process sleep for 10000 seconds.
This means we will not be able to use any other command from the same
terminal:
$ sleep 10000

www.allitebooks.com

http://www.allitebooks.org

Drilling Deep into Process Management, Job Control, and Automation

[24]

2. Now, you can press the Ctrl + C key combination to terminate the process
created by the sleep command.

3. Now, use the following command:
$ sleep 10000 &

The preceding command will create a new process, which will be put to sleep
for 10000 seconds; but this time, it will start running in the background.
Therefore, we will be able to enter the next command in the Bash terminal.

4. Since the newly created process is running in the background, we can enter
new commands very easily in the newly created terminal:
$ sleep 20000 &

$ sleep 30000 &

$ sleep 40000 &

5. To check the presence of all the processes, enter the following command:
$ jobs

Chapter 2

[25]

The jobs command lists all the processes running in terminal, including
foreground and background processes. You can clearly see their status
as running, suspended, or stopped. The numbers in [] show the job ID.
The + sign indicates which command will receive fg and bg commands
by default. We will study them in the next topics.

6. If you want to make any existing background process to run in the
foreground, then use the following command:
$ fg 3

The preceding command will make the job number 3 to run in the foreground
instead of the background.
If we want to make the process to stop executing and get it suspended, then
press Ctrl + Z. This key combination makes the foreground process to stop
executing. Please note that the process has stopped but not terminated.

7. To make the stopped process continue running in background, use the
following command:
$ bg job_number

$ bg 3

The preceding command will make suspended job numbered process 3
to run in background.

8. If you wish to terminate the process, you can use the job ID or process ID
as follows:
$ jobs –l // This will list jobs with pid

$ kill pid or

$ kill %job_id // This will kill job

$ kill %3

Drilling Deep into Process Management, Job Control, and Automation

[26]

Process monitoring tools – top, iostat,
and vmstat
We can view the native performance of various processes in OS using tools which will
be discussed further. To view a dynamic real-time view of the top running processes in
OS, use the following command:

$top

An explanation of the top command generated output is as follows:

The $top command displays a lot of information about the running system.

The first line of the display is shown as follows:

Chapter 2

[27]

The description of fields in the first line is as follows:

• Current time
• System uptime
• Number of users logged in
• Load average of 5, 10, and 15 minutes, respectively

The second line is shown as follows:

This line shows the summary of tasks or processes. It shows the total number of
all the processes, which includes the total number of running, sleeping, stopped,
and zombie processes.

The third line is shown as follows:

This line shows information about CPU usage in % in different modes as follows:

• * us (user): CPU usage in % for running (un-niced) the user processes
• * sy (system): CPU usage in % for running the kernel processes
• * ni (niced): CPU usage in % for running the niced user processes
• * wa (IO wait): CPU usage in % for waiting for the IO completion
• * hi (hardware interrupts): CPU usage in % for serving hardware interrupts
• * si (software interrupts): CPU usage in % for serving software interrupts
• * st (time stolen): CPU usage in % for time stolen for this vm by

the hypervisor

The fourth line is shown as follows:

This line provides information about memory usage. It shows the physical memory
that is used, free, available, and used for buffers. The next line shows the swap
memory that is available, used, free, and cached.

Drilling Deep into Process Management, Job Control, and Automation

[28]

After this line, we see the table of values with the following columns:

• PID: This is the ID of the process
• USER: This is the user that is the owner of the process
• PR: This is the priority of the process
• NI: This is the "NICE" value of the process
• VIRT: This is the virtual memory used by the process
• RES: This is the physical memory used for the process
• SHR: This is the shared memory of the process
• S: This indicates the status of the process: S=sleep, R=running,

and Z=zombie (S)
• %CPU: This is the % of CPU used by this process
• %MEM: This is the % of RAM used by the process
• TIME+: This is the total time of activity of this process
• COMMAND: This is the name of the process

Let's take a look at the performance monitoring tools—iostat, vmstat, and sar:

• To view the statistics of the CPU and the input/output device's utilization,
use the following command:
$ iostat

$ iostat –c

Shows only CPU statistics
$ iostat –d

Shows only disk statistics

• To view the virtual memory statistics, use the following command:
$vmstat

Chapter 2

[29]

$ vmstat -s

This shows various event counters and memory statistics
$ vmstat –t 1 5

Runs for every one second stops after executing for five intervals
$ sar –u 2 3

This will show the CPU activity report every 2 seconds, 3 times:

Understanding "at"
Many a times we need to schedule a task for a future time, say in the evening at 8
P.M. on a specific day. We can use the at command in such a situation.

Sometimes we need to repeat the same task at a specific time, periodically, every day,
or every month. In such situations, we can use the crontab command.

Let's learn more about the utility of the at command. To use the at command, the
syntax is as follows:

$ at time date

The following are the examples of the at command:

• The Control + D command will save the at job. The task will be executed at
11.15 A.M. This command will log messages to the log.txt file at 11.15 A.M.:
$ at 11.15 AM

at > echo "Hello World" > $HOME/log.txt

at > Control + D

Drilling Deep into Process Management, Job Control, and Automation

[30]

• The following command will send an e-mail on March 31, 2015 at 10 A.M.:
$ at 10am mar 31 2015

at> echo "taxes due" | mail jon

at> ^D

• The following command will make the task run on May 20 at 11 A.M.:
$ at 11 am may 20

• All the jobs which are scheduled by the at command can be listed using
the following command:
$ atq

• To remove a specific job listed by the atq command, we can use the
following command:
$ atrm job-id

Understanding "crontab"
If we need to run a specific task repetitively, then the solution is to use crontab.

The syntax of the command is as follows:

$ crontab –e

This will open a new editor. The following diagram is the syntax to add tasks.
The fields to use for repeating tasks at what time are explained here:

Finally, to save the jobs, use the following:

wq # save and quite crontab job

Chapter 2

[31]

The following are a few examples of the crontab command:

• Use the following command to run a script every 5 minutes, every day:
5 * * * * $HOME/bin/daily.job >> $HOME/tmp/out 2>&1

• Use the following command to run 5 minutes after midnight every day:
5 0 * * * $HOME/bin/daily.job >> $HOME/tmp/out 2>&1

• Use the following command to run at 2.15 P.M. on the first of every
month—the output is mailed to Paul:
15 14 1 * * * $HOME/bin/monthly

• Use the following command to run at 10 P.M. on weekdays, send the
e-mail to ganesh@abc.com:
0 22 * * 1-5 sendmail ganesh@abc.com < ~/work/email.txt

• The sendmail utility is used for sending e-mails. We can use the mail utility
also as follows:
sendmail user@example.com < /tmp/email.txt

• The following commands are self-explanatory from text of echo:
23 0-23/2 * * * echo "run 23 minutes after midn, 2 am, 4 am,
everyday

5 4 * * sun echo "run at 5 after 4 every Sunday"

The following are a few more crontab command examples:

Min Hour Day / month Month Day / week Execution time

45 0 5 1,6,12 *
00:45 hrs on the 5th
of January, June, and
December.

0 18 * 10 1-5 6.00 P.M. every weekday
(Monday-Friday) only in
October.

0 0 1,10,15 * * Midnight on the 1st ,10th,
and 15th of the month

5,10 0 10 * 1 At 12.05 and 12.10 every
Monday and on the 10th
of every month

Drilling Deep into Process Management, Job Control, and Automation

[32]

We can add macros in the crontab file. Use the following to restart my_program after
each reboot:

@reboot /bin/my_program

@reboot echo `hostname` was rebooted at `date` | mail -s "Reboot
notification" ganesh.admin@some-corp.com

The following is the summary of a few more macros:

Entry Description Equivalent To
@reboot Run once at startup None
@weekly Run once a week 0 0 * * 0
@daily Run once a day 0 0 * * *
@midnight (same as @daily) 0 0 * * *
@hourly Run once an hour 0 * * * *

Summary
In this chapter, we studied about the basic process management. You learned about
the ps command. Using commands like jobs, fg, bg, kill, and pkill, we studied about
job management. Later on, you learned about the top, iostat, and vmstat process
monitoring tools.

In the next chapter, you will learn about standard input/output, various
meta-characters, and text filters used in Shell scripting.

[33]

Using Text Processing and
Filters in Your Scripts

In the last chapter, you studied about basic process management. You learned about
the ps command. You also studied about job management using commands such as
jobs, fg, bg, kill, pkill as well as various other tools such as top, iostat, and vmstat.

In this chapter, you will cover the following topics:

• Using more, less, head, and tail
• Using diff, cut, paste, comm, and uniq
• Working with grep
• Understand standard input, output, and standard error
• Understand various metacharacters and their usage

Text filtering tools
Normally, Shell scripting involves report generation, which will include processing
various text files and filtering their output to finally produce desirable results. Lets
start discussing the two Linux commands, namely, more and less:

more: Sometimes we get a very large output on the screen for certain commands,
which cannot be viewed completely on one screen. In such cases, we can use the
more command to view the output text one page at a time. Add "| more" after the
command, as follows:

$ ll /dev | more

The | is called pipe. You will learn more about it in the next chapters. In this
command, pressing the spacebar will move the output on the screen one page
at a time, or pressing Enter will move the screen by one line at a time.

Using Text Processing and Filters in Your Scripts

[34]

less: Instead of more, if you use less it will show a screen containing the full text
all at once. We can move forward as well as backwards. This is a very useful text
filtering tool.

The syntax of usage is as follows:

$ command | less

e.g. $ ll /proc | less

This command will show a long listing of directory listing of the /proc folder.
Let's say that we want to see if the cpuinfo file is present in the directory or not?
Just press the arrow key up or down to scroll through the display. With the more
command, you can not scroll backwards. You can move forward only. With page
up and down key presses, you can move forward or backward one page at a time,
which is very fast.

In addition to scrolling forward or backward, you can search for pattern using / for
forward search and ? for backward search. You can use N for repeating the search in
a forward or backward direction.

Head and tail
For testing the next few commands, we will need a file with a sequence of numbers
1 to 100. For this, use the following command:

$ seq 100 > numbers.txt

The preceding command created a file with the numbers 1 to 100 on separate lines.
The following example shows the usage of the head command:

$ head // will display top 10 lines

$ head -3 numbers.txt // will show first 3 lines

$ head +5 numbers.txt // will show from line 5. Some shell may not work
this command

The following example shows the usage of the tail command:

$ tail // will display last 10 lines

$ tail -5 numbers.txt // will show last 5 lines

$ tail +15 numbers.txt // will show from line 15 onwards. Some shell may
not work

To print lines 61 to 65 from numbers.txt into file log.txt, type the following:

$ head -65 numbers.txt | tail -5 > log.txt

Chapter 3

[35]

The diff command
The diff command is used to find differences between two files. Let's see a few
examples to find out its usage.

The content of file1 is as follows:

I go for shopping on Saturday
I rest completely on Sunday
I use Facebook & Tweeter for social networking

The content of file2 is as follows:

Today is Monday.
I go for shopping on Saturday
I rest completely on Sunday
I use Facebook & Tweeter for social networking

Then, type the diff command:

$ diff file1 file2

Output:

0a1

> Today is Monday

In the output, 0a1 tells us that line number 1 is added in file2.

Let's learn another example with line deletion.

The content of file1 is as follows:

Today is Monday
I go for shopping on Saturday
I rest completely on Sunday
I use Facebook & Tweeter for social networking

The content of file2 is as follows:

Today is Monday
I go for shopping on Saturday
I rest completely on Sunday

Then, type the diff command:

$ diff file1 file2

Using Text Processing and Filters in Your Scripts

[36]

The output is as follows:

4d3

< I use Facebook & Tweeter for social networking.

In the output, 4d3 tells us that line number 4 is deleted in file2. Similarly, the
change command will show us changes in file as well.

The cut command
The cut command is used to extract specified columns/characters of a text, which is
given as follows:

• -c: Will specify the filtering of characters
• -d: Will specify the delimiter for fields
• -f: Will specify the field number

The following are few examples that show the usage of the cut command:

• Using the next command, from the /etc/passwd file, the fields 1 and 3
will be displayed. The display will contain the login name and user ID.
We used the –d: option to specify that the field or columns are separated by
a colon (:):
$ cut -d: -f1,3 /etc/passwd

• Using this command, from the /etc/passwd file, the fields 1 to 5 will be
displayed. The display will contains the login name, encrypted password,
user ID, group ID, and user name:
$ cut -d: -f1-5 /etc/passwd

Chapter 3

[37]

• This command will show characters 1 to 3 and 8 to 12 from the emp.lst file:
$ cut -c1-3,8-12 /home/student/emp.lst

• The output of the date command is sent as an input to the cut command
and only the first three characters are printed on screen, which is shown as
follows:
$ date | cut -c1-3

Mon

The paste command
Using this utility, we can paste two files horizontally, such as file_1, which will
become the first column and file_2 will become the second column:

$ paste file_1 file_2

The join command
Consider two files, namely, one.txt and two.txt.

• The content of one.txt is as follows:
1 India
2 UK
3 Canada
4 US
5 Ireland

Using Text Processing and Filters in Your Scripts

[38]

• The content of two.txt is as follows:
1 New Delhi
2 London
3 Toronto
4 Washington
5 Dublin

In this case, for both the files, the common fields are the fields which have
serial numbers that are the same in both files. We can combine both files by
following command:

$ join one.txt two.txt

The output will be as follows:

1 India New Delhi

2 UK London

3 Canada Toronto

4 US Washington

5 Ireland Dublin

The uniq command
The following are a few examples showing the usage of the uniq command:

• This command removes duplicate adjacent lines from the file:
$ cat test

aa

aa

cc

cc

bb

bb

yy

zz

$ uniq test

Chapter 3

[39]

This output removes the duplicate adjacent lines from test file, shown
as follows:
aa

cc

bb

yy

zz

• The next command prints only duplicate lines:
$ uniq -d test

Output:
aa

cc

bb

The comm command
The comm command shows the lines unique to file_1, file_2 along with the common
lines in them. We can use various options while using the command in the scripts:

$ cat file_1

Barack Obama

David Cameron

Narendra Modi

$ cat file_2

Barack Obama

Engela Merkel

Vladimir Putin

$ comm –nocheck-order file_1 file_2

 Barack Obama

 David Cameron

 Engela Merkel

 Narendra Modi

 Vladimir Putin

Using Text Processing and Filters in Your Scripts

[40]

In the preceding example, we can see:

• The first column shows unique lines in file_1
• The second column shows unique lines in file_2
• The last column shows the content common in both the files

The output shows that the unique files in file_1 are David Cameron and Narendra
Modi. Unique files in the second file are Engela Merkel and Vladimir Putin.
The command name in both the files is Barack Obama, which is displayed in the
third column.

The tr command
The tr command is a Linux utility for text processing such as translating, deleting,
or squeezing repeated characters, which is shown as follows:

$ tr '[a-z]' '[A-Z]' < filename

This will translate the lower case characters to upper case:

$ tr '|' '~' < emp.lst

This will squeeze multiple spaces into a single space:

$ ls –l | tr -s " "

In this example, the -s option squeezes multiple contiguous occurrences of the
character into a single char.

Additionally, the -d option can remove the characters.

Sort: It sorts the contents of a text file, line by line.

• -n: Will sort as per the numeric value
• -d: Will sort as per the dictionary meaning
• -r: Will sort in the reverse order
• -t: Option to specify delimiter for fields
• +num: Specifies sorting field numbers
• -knum: Specifies sorting filed numbers
• $ sort +4 sample.txt: This will sort according to the 4th field

Chapter 3

[41]

• $ sort –k4 sample.txt: This will sort according to the 4th field

Sr Examples of command usage Explanation
1 sort sample.txt Alphabetically sorting of lines
2 sort -u sample.txt Duplicate entries are sorted
3 sort -r sample.txt Reverse sort
4 sort-n -k3 sample.txt Numerical sorting of the 3rd field

IO redirection
You will learn the very useful concept of I/O redirection in this section.

File descriptors
All I/O, including files, pipes, and sockets, are handled by the kernel via a
mechanism called the file descriptor. A file descriptor is a small unsigned integer,
an index into a file-descriptor table maintained by the kernel and used by the kernel
to reference open files and I/O streams. Each process inherits its own file-descriptor
table from its parent. The first three file descriptors are 0, 1, and 2. File descriptor 0 is
standard input (stdin), 1 is standard output (stdout), and 2 is standard error (stderr).
When you open a file, the next available descriptor is 3, and it will be assigned to the
new file.

Redirection
When a file descriptor is assigned to something other than a terminal, it is called I/O
redirection. The shell performs redirection of output to a file by closing the standard
output file descriptor 1 (the terminal) and then assigning that descriptor to the file.
When redirecting standard input, the shell closes file descriptor 0 (the terminal) and
assigns that descriptor to a file. The Bash shells handle errors by assigning a file to
the file descriptor 2.

The following command will take input from the sample.txt file:

$ wc < sample.txt

The preceding command will take content from the sample.text file.
The wc command will print the number of lines, words, and characters in the
sample.txt file.

$ echo "Hello world" > log.txt

Using Text Processing and Filters in Your Scripts

[42]

This command will redirect output to be saved in the log.txt file.

$ echo "Welcome to Shell Scripting" >> log.txt

This command will append the Hello World text in the log.txt file.

The single > will overwrite or replace the existing text in log file. And double >> will
append the text in the log file.

Let's see a few more examples:

$ tr '[A-Z]' '[a-z]' < sample.txt

The preceding tr command will read text from the sample.txt file. The tr
command will convert all uppercase letters to lower case letters and will print
converted text on screen:

$ ls > log.txt

$ cat log.txt

The output of command will be as follows:

dir_1

sample.txt

extra.file

In this example command, ls is sending directory content to file log.txt.
Whenever we want to store the result of the command in the file, we can use
the preceding example.

$ date >> log.txt

$ cat log.txt

Output:

dir_1

dir_2

file_1

file_2

file_3

Sun Sept 17 12:57:22 PDT 2004

In the preceding example, we are redirecting and appending the result of the date
command to the log.txt file.

$ gcc hello.c 2> error_file

Chapter 3

[43]

The gcc is a C language compiler program. If an error is encountered during
compilation, then it will be redirected to error_file. The > character is used for a
success result and 2> is used for error results redirection. We can use error_file
for debugging purposes:

$ find . –name "*.sh" > success_file 2> /dev/null

In the preceding example, we are redirecting output or success results to success_
file and errors to /dev/null. /dev/null is used to destroy the data, which we do
not want to be shown on screen.

$ find . –name "*.sh" &> log.txt

The preceding command will redirect both output and error to log.txt.

$ find . –name "*.sh" > log.tx 2>&1

The preceding command will redirect result to log.txt and send errors to where the
output is going, such as log.txt.

$ echo "File needs an argument" 1>&2

The preceding command will send a standard output to the standard error. This will
merge the output with the standard error.

The summary of all I/O redirection commands will be as follows:

< sample.txt The command will take input from sample.txt
> sample.txt The success result will be stored in sample.txt
>> sample.txt The successive outputs will be appended to sample.txt
2> sample.txt The error results will be stored in sample.txt
2>> sample.txt The successive error output will be appended to sample.txt
&> sample.txt This will store success and errors, such as in sample.txt
>& sample.txt This will store success and errors, such as in sample.txt

(same as above)
2>&1 This will redirect an error to where output is going
1>&2 This will redirects output to where error is going
>| This overrides no clobber when redirecting the output
<> filename This uses the file as both standard input and output if a device

file (from /dev)
cat xyz > success_file
2> error_file

This stores success and failure in different files

Using Text Processing and Filters in Your Scripts

[44]

The following is the summary of various metacharacters:

Char Meaning Example Possible output

* Match with zero or
multiple number of any
character

$ ls –l *.c file* Sample.c, hello.c, file1,
file_2, filebc

 ? Match any single
character

$ ls –l file? filea, fileb, file1

[..] Match with any single
character with in the
bracket

$ ls –l file[abc] filea, fileb,filec

; Command separator $cat filea; date Displays the content of filea
and displays the current date
and time

| Pipe two commands $ cat filea | wc -l Prints the number of lines of
filea

() Group commands, used
when the output of the
command group has to
be redirected

$ (echo
"***x.c***";cat
x.c)>out

Redirects the content of x.c
with a heading ***x.c*** to
the file out

Run the following command:

$ touch filea fileb filec fileab filebc filead filebd filead

$ touch file{1,2,3}

Try the following command out:

$ ls s*

$ ls file

$ ls file[abc]

$ ls file[abc][cd]

$ ls file[^bc]

$ touch file file1 file2 file3 … file20

$ ls ?????

file1

file2

file3

$ ls file*

file file1 file10 file2 file3

Chapter 3

[45]

$ ls file[0-9]

file1 file2 file3

$ ls file[0-9]*

file1 file10 file2 file3

$ ls file[!1-2]

file3

Brace expansion
Curly braces allow you to specify a set of characters from which the shell
automatically forms all possible combinations. To make this work, the characters
to be combined with the given string must be specified as a comma separated list
with no spaces:

$ touch file{1,2,3}

$ ls

$ mkdir directory{1,2,3}{a,b,c}

$ ls

$ touch file{a..z}

$ ls

Using Text Processing and Filters in Your Scripts

[46]

The following is the summary of various io-redirection and logical operators:

For example:

$ ls || echo "Command un-successful"

$ ls a abcd || echo "Command un-successful"

These commands will print Command un-successful if the ls command
is unsuccessful.

Pattern matching with the vi editor
For learning pattern matching, we will ensure that the pattern that we will search
should be highlighted when the searched pattern is found.

The configuration file for vi is /etc/vimrc.

Chapter 3

[47]

In the vi editor, give the following command to highlight search:

Sr. Commands Description
1 :set hlsearch This highlights search pattern
2 :se[t] showmode Show when you are in insert

mode
3 :se[t] ic Ignore case when searching
4 :set noic Shows case sensitive search

The mentioned user should open the file in vi, press the Esc button so that it goes into
command mode and then enter colon followed by these commands.

The following are commands for pattern search and replace:

Sr. Commands Description
1 /pat This searches for the pattern pat and places

the cursor where the pattern occurs
2 / This repeats the last search
3 :%s/old/new/g Globally, all the occurrences of old will be

replaced by new
4 :#,#s/old/new/g Where #,# should be replaced with the

numbers of the two lines (say between line
numbers 3 and 6).
For example: 3,6s/am/was/g

The following is an example of regular expression for replacing Tom by David:

:1,$s/tom/David/g // from line 1 to end ($), replace tom by David

:1,$s/\<[tT]om\>/David/g // start and end of word \< \>

This is another example of regular expression.

Create the love.txt file, as follows:

Man has love for Art

World is full of love

Love makes world wonderful

love looove lve

love

Love love lover loves

I like "Unix" more than DOS

Using Text Processing and Filters in Your Scripts

[48]

I love "Unix"/

I said I love "Unix"

I love "unix" a lot

Use the following commands for testing pattern searching facilities:

Command Description
:set hlsearch This will highlight the search pattern, when it is

found
/love/ This will highlight any pattern matching with

love n-forward N-backward
/^love/ This will highlight the line starting with love
/love$/ This will highlight the line ending with love
/^love$/ This will highlight line containing only word

love

/l.ve/ This will highlight any character match for .
/o*ve/ This will highlight love, loooove, lve
/[Ll]ove/ This will search for patterns Love and love
/ove[a-z]/ This will highlight any matching character in the

a to z range
/ove[^a-zA-Z0-9" "]/ Except alphabets or numbers, this will match

punctuation marks such as , ; : and similar
:%s/unix/Linux/g This will replace unix by Linux
:1,$s/unix/Linux/g This will replace unix by Linux from line 1 to

end ($)
:1,$s/\<[uU]nix\>/Linux/g This will start and end of word \< \>
/^[A–Z]..$ This will highlight the line starting with

uppercase, two chars and end line
/^[A–Z][a–z]*3[0–5]/ This will highlight any line ending with 30 to 35
/[a–z]*\ ./ This will highlight any line with lower case and

ending with "."

Pattern searching using grep
The g/RE/p stands for globally search for the regular expression (RE) and print out
the line.

Return status – success 0, pattern not found 1, file not found 2

$ ps -ef | grep root

Chapter 3

[49]

The preceding command will show all processes running currently whose user
ID is "root"

$ ll /proc | grep "cpuinfo"

The preceding command will show the file with the name cpuinfo from the
/proc directory.

$ grep –lir "text" * // only file names //
$ grep –ir "text" dir_name // show lines of files //

We will try the following commands on the love.txt file:

Metacharacter Function Example Description
^ Beginning-of-line

anchor
'^mango' Will display all lines

beginning with mango
$ End-of-line anchor 'mango'$' Will display all lines ending

with mango
. Matches single

character
'm..o' Will display lines containing

m, followed by two characters,
followed by an o

* Matches zero or more
characters preceding
the asterisk

'*mango' Will display lines with zero or
more spaces, followed by the
pattern mango

[] Matches single
character in the set

'[Mm]ango' Will display lines containing
Mango or mango

[^] Matches single
character not in the set

'[^A–M]
ango'

Will display lines not
containing a character in the
range A through M, followed
by ango

\< Beginning-of-word
anchor

'\<mango' Will display lines containing a
word that begins with mango

\> End-of-word anchor 'mango\>' Will display lines containing a
word that ends with mango

We will create a new file sample.txt, as follows:

Apple Fruit 5 4.5
Potato Vegetable 4 .5
Onion Vegetable .3 8
Guava Fruit 5 1.5
Almonds Nuts 1 16
Tomato Vegetable 3 6
Cashew Nuts 2 12
Mango Fruit 6 6
Watermelon Fruit 5 1

Using Text Processing and Filters in Your Scripts

[50]

We will try the following commands on the sample.txt file:

Sr.
no.

Command Description

1 grep Fruit sample.txt This will show all lines with pattern Fruit.
2 grep Fruit G* This searches pattern Fruit in all files

starting with G.
3 grep '^M' sample.txt This searches all lines starting with M.
4 grep '6$' sample.txt This searches lines ending with 6.
5 grep '1\..' sample.txt This displays lines containing 1 and any

character after it.
6 grep '\.6' sample.txt This shows lines containing .6.
7 grep '^[AT]' sample.txt This searches lines starting with A or T.
8 grep '[^0-9]' sample.txt This contains at least one alphabet.
9 grep '[A-Z][A-Z] [A-Z]'

sample.txt
This searches the upper case, upper case
space, and upper case word.

10 grep '[a-z]\{8\}' sample.
txt

This displays all lines in which there are at
least eight consecutive lowercase letters.

11 grep '\<Fruit' sample.txt This displays all lines containing a
word starting with Fruit. The \< is the
beginning-of-word anchor.

12 grep '\<Fruit\>' sample.
txt

This displays the line if it contains the
word Fruit.
The \< is the beginning-of-word anchor
and the \> is the end-of-word anchor.

12 grep '\<[A-Z].*o\>'
sample.txt

This displays all lines containing a word
starting with an uppercase letter, followed
by any number of characters and a word
ending in o.

14 grep -n '^south' sample.
txt

This displays line numbers also.

15 grep –i 'pat' sample.txt This displays case insensitive search.
16 grep -v 'Onion' sample.txt

> temp

mv temp sample.txt

This deletes the line containing pattern.

17 grep –l 'Nuts' * This lists files containing pattern.
18 grep –c 'Nuts' sample.txt This prints the number of lines where

pattern is present.
19 grep –w 'Nuts' sample.txt This counts where the whole world pattern

is present, not a part of the word.

Chapter 3

[51]

Summary
In this chapter, you learned about using more, less, head, and tail commands, and
text processing tools like cut, paste, comm, and uniq. We also learned what standard
input, output, and standard error are. Later on, you learned about metacharacters
and pattern matching using vi and grep.

In the next chapter, you will learn about analyzing shell interpretation of commands,
working with command substitution, command separators, and pipes.

[53]

Working with Commands
In the last chapter, you learned about using more, less, head, and tail commands,
and text processing tools like diff, cut, paste, comm, and uniq. You learned
what standard input, output, and standard error are. You also learned about
metacharacters and pattern matching using vi and grep.

In this chapter, you will cover the following topics:

• Analyzing shell interpretation of commands
• Working with command substitution
• Working with command separators
• Working with pipes

Learning shell interpretation of
commands
When we log in, the $ sign will be visible in the shell terminal (# prompt if logged
in as root or administrator). The Bash shell runs scripts as interpreter. Whenever we
type a command, the BASH shell will read them as series of words (tokens). Each
word is separated by a space (), semi colon (;), or any other command delimiter.
We terminate the command by pressing the Enter key. This will insert a new line
character at the end of the command. The first word is taken as a command, then
consecutive words are treated as options or parameters.

The shell processes the command line as follows:

• If applicable, substitution of history commands
• Converting command line into tokens and words
• Updating history

Working with Commands

[54]

• Processing of quotes
• Defining functions and substitution of alias
• Setting up of pipes, redirection, and background
• Substitution of variables (such as $name and $user) is performed
• Command substitution (echo `cal` and echo `date`) is performed
• Globing is performed (file name substitution, such as rm *)
• Execution of the command

The sequence of execution of different types of commands will be as follows:

• Aliases (l, ll, egrep, and similar)
• Keywords (for, if, while, and similar)
• Functions (user defined or shell defined functions)
• Built-in commands (bg, fg, source, cd, and similar)
• Executable external commands and scripts (command from the bin

and sbin folder)

Whenever a command is given in a shell or terminal, the complete command will be
tokenized, and then shell will check if the command is alias.

Aliases, keywords, functions, and built-in commands are executed in the current
shell, therefore their execution is fast as compared to executable external commands
or scripts. Executable external commands will have a corresponding binary file or
Shell script file in the file system, which will be stored in any folder. The shell will
search the binary file or script of a command by searching in the PATH environment
variable. If we want to know what the type of command it is, such as if it is an
alias or a function or internal command, it can be found out by the type built-in
command, which is shown as follows:

$ type mkdir

mkdir is /bin/mkdir

$ type cd

cd is a shell builtin

$ type ll

ll is aliased to `ls -alF'

$ type hello

Chapter 4

[55]

hello is a function

hello ()

{

 echo "Hello World !";

}

$ type for

for is a shell keyword

Checking and disabling shell internal
commands
Bash has provision of a few built-in commands to change the sequence of command
line processing. We can use these built-in commands to change default behavior of
command-line processing.

• The build-in command will disable aliases and functions for the command
which will be following the command. The shell will search for the external
command and the built-in command will search for the command passed as
an argument, as follows:
$ command ls

This will make aliases and functions be ignored and the external ls
command will execute.

• The builtin command will work as follows:
$ builtin BUILT-IN

This will ignore aliases and functions from the shell environment and only
built-in commands and external commands will be processed.

• The break built-in command will work as follows:
$ builtin –n break

This will make the break built-in to be disabled and the external command
break will be processed.

• To display all shell built-in commands, give the command as follows:
$ enable

Working with Commands

[56]

• The output on the screen will show the following as shell internal commands:

. command eval history pwd test

.. compgen exec jobs read times
[complete exit kill readarray trap
alias compopt export let readonly true
bg continue false local return type
bind declare fc logout set, unset typeset
break dirs fg mapfile shift ulimit
builtin disown getopts popd shopt umask
caller echo hash printf source unalias
cd enable help pushd suspend wait

• The shell built-in command can be disabled by following:
$ enable –n built-in-command

For example: $ enable –n test
In this case, in my shell, if we have to test an external command, then instead
of the internal test command, the external test command will be executed.

The exit status
In Shell scripting, we need to check if the last command has successfully executed or
not. For example, whether a file or directory is present or not. As per the result, our
Shell script will continue processing.

For this purpose, the BASH shell has one status variable ?. The status of the last
command execution is stored in ?. The range of numerical value stored in ? will be
from 0 to 255. If successful in execution, then the value will be 0; otherwise, it will
be non-zero, which is as follows:

$ ls

$ echo $?

0

Here, zero as the return value indicates success.

In the next case, we see:

$ ls /root

$ echo $?

2

Chapter 4

[57]

Here, non-zero value indicates an error in the last command execution.

In the next case, we see:

$ find / -name hello.c

$ echo $?

The return value will indicate if the hello.c file is present or not!

Command substitution
In the keyboard, there is one interesting key, the backward quote such as "`". This
key is normally situated below the Esc key. If we place text between two successive
back quotes, then echo will execute those as commands instead of processing them
as plane text.

Alternate syntax for $(command) is the backtick character "`", which we can see
as follows:

$(command) or `command`

For example:

• We need to use proper double quoted inverted commas, as follows:
$ echo "Hello, whoami"

• The next command will print the text as it is; such as Hello, whoami:
Hello, whoami

• Use proper double inverted commas:
$ echo "Hello, `whoami`."

Hello, student

When we enclose whoami text in the "`" character, the same text which was
printed as plain text will run as a command, and the command output will
be printed on screen.

• Use proper double inverted commas:
$ echo "Hello, $(whoami)."

Hello, student.

Same like the earlier explanation.

Working with Commands

[58]

Another example:

echo "Today is date"

Output:

Today is date

A similar example:

echo "Today is `date`"

Or:

echo "Today is $(date)"

Output:

Today is Fri Mar 20 15:55:58 IST 2015

Further, similar examples include:

$ echo $(cal)

In this example, new lines are lost.

Another example:

$ echo "$(cal)"

Here, the display is properly formatted.

Next, nesting of commands is as follows:

$ pwd

/home/student/work

Chapter 4

[59]

$ dirname="$(basename $(pwd)) "

$ echo $dirname

This command shows us that the base directory for the current directory is student.

Command separators
Commands can also be combined in such a way that they are executed in a
particular sequence.

Command1; command2
A command line can consist of multiple commands. Each command is separated by a
semicolon, and the command line is terminated with a newline. The exit status is that
of the last command in the chain of commands.

The first command is executed, and the second one is started as soon as the first one
has finished.

$ w; date

Output:

$ w ; date > whoandwhen

Output of the date command will be redirected to the whoandwhen file.

Working with Commands

[60]

In the preceding example, we can see that when we put multiple commands on
the same line, but separated by the ";" command, then those commands execute
sequentially one by one.

$ date; who am i

Tue Mar 10 23:21:38 PDT 201

student pts/0 2015-03-10 23:12 (:0.0)

In the preceding example, the date command is executed first and the who am I
command will be executed next. Both the commands are typed on same lines,
separated by the ";" " command.

Command grouping
Commands may also be grouped so that all of the output is either piped to another
command or redirected to a file.

$ (ls; pwd; date) > outputfile

The output of each of the commands is sent to the file called outputfile. The spaces
inside the parentheses are necessary.

$ (w ; date) > whoandwhen

The output of the w command and date will be redirected to the whoandwhen file:

$ (echo "***x.c***";cat x.c) > log.txt

Output:

This redirects the content of x.c with a heading ***x.c*** to the file out.

$ (pwd; ls; date) > log.txt

Output:

This redirects output of commands pwd, ls, and date in the log.txt file.

Chapter 4

[61]

Logical operators
Let's now take a look at logical operators.

Command1 & command2
The first command is started in the background to continue until it has finished;
immediately after starting first command, the second command is started and it
will run in the foreground:

$ find / -name "*.z" & s

---------------- -----

Command1 command2

In the preceding example, first command such as find will start running in the
background and while the find command is running in background, the ls
command will start running in foreground.

Command1 && command2
The second command is only started if the first command is successful. To achieve
this, the shell checks the exit (return) status of the first command and starts the
second command only if and when that exit status is found to be "0".

$ ls /home/ganesh && echo "Command executed successfully"

Since we are working as user ganesh,

$ ls /root && echo "Command executed successfully"

Since we are working as a normal user, we cannot access the /root directory.
Therefore, nothing will be printed on screen.

Command1 || command2
The second command is only started if the first command fails. The shell checks
the exit status of the first command and starts the second command only if that
exit status is not equal to "0".

$ ls /root || echo "Command execution failed"

Example:

$ ls || echo "command ls failed"

Working with Commands

[62]

In the preceding example, if ls runs successfully, then echo will not be called. If the
ls command fails such as $ ls /root and if user is not root, then ls will fail and
the echo command will print command ls failed.

When && or || are used, the exit status of the first command is checked first, then the
decision to perform the next will be taken.

For example:

$ ls

$ echo $?

 0

$ ls /root

 ls: /root: Permission denied

$ echo $?

 1

$ tar cvzf /dev/st0 /home /etc | | mail -s "Something went wrong with the
backup" root

If we give the command as follows:

$ cd /home/student/work/temp/; rm –rf *

Initially, the shell will change to the /home/student/work/temp folder, and then it
will delete all files and folders.

If we give the command as follows:

cd /backup/ol/home/student/work/temp/ && rm * -rf

This will first change to the required folder, and then the rm command will be
called for deletion. The problem with ";" is that even if the shell fails to change
to the required folder, the rm command will execute and it will delete all the files
and folders from your original folder. This will be really dangerous.

For example:

$ [["a" = "b"]]; echo ok

ok

In this case, the [[]] expression will evaluate to false. Since the semicolon will
not check the status of the earlier command, ok will be printed even if the first [[]]
fails.

$ [["a" = "b"]] && echo ok

Chapter 4

[63]

In this case, the [[]] expression will evaluate to false. As the first expression is
false, the "&&" operator will not proceed to execute the next command.

In this case, ok will be printed only if [[]] is true.

Pipes
We have already used pipes in many earlier sessions. It is a tool for inter-process
communication.

$ command_1 | command_2

In this case, the output of command_1 will be send as an input to command_2. The
limitation is that the communication is half duplex. This means the data can flow in
only one direction. Normally for inter-process communication, you need to open files
then get the file descriptor. This will be used to write to the pipe file. Again, we need
to create a Fifo file by special commands. The preceding technique simplifies all
this process. We only need to insert "|" in between the two processes. The operating
system creates one intermediate buffer. This buffer is used for storing the data from
one command and will be used again for the second command.

A simple example is as follows:

$ who | wc

The preceding simple command will be carrying out three different activities.
First, it will copy the output of the who command to the temporary file. Then the wc
command will read the temporary file and display the result. Finally, the temporary
file will be deleted.

Normally, there will be two processes. The first command is the writer process.
The second process is the reader process. The writer process will write to temp_file
and the reader will read from temp_file. Examples of writer processes are ps, ls,
and date. Examples of reader processes are wc, cat, and sort.

Summary
In this chapter, you learned about how the shell interprets any command entered on
the command line. We also studied command substitution and separators in detail.

In the next chapter, you will learn about variables and environment variables. You
will also learn about how to export environment variables, and then you will learn
about read only variables, command line arguments, and arrays.

www.allitebooks.com

http://www.allitebooks.org

[65]

Exploring Expressions
and Variables

In the last chapter, you learned about how shell interprets any command, which is
entered in the terminal or the command line. We also studied command substitution
and separators in detail.

In this chapter, we will cover following topics:

• Working with environment variables
• Exporting variables
• Working with read-only variables
• Working with command line arguments (special variables, set and shift,

and getopt)
• Working with arrays

Understanding variables
Let's learn about creating variables in shell.

Declaring variables in Linux is very easy. We just need to use the variable name and
initialize it with the required content.

$ person="Ganesh Naik"

To get the content of the variable we need to prefix $ before the variable.

Exploring Expressions and Variables

[66]

For example:

$ echo person

person

$ echo $person

Ganesh Naik

The unset command can be used to delete a variable:

$ a=20

$ echo $a

$ unset a

The unset command will clear or remove the variable from shell environment as well.

$ person="Ganesh Naik"

$ echo $person

$ set

Here, the set command will show all variables declared in shell.

$ declare -x variable=value

Here, the declare command with the –x option will make it an environmental
or global variable. We will understand more about environmental variables in
the next sessions.

$ set

Again here, the set command will display all variables as well as functions that
have been declared.

$ env

Here, the env command will display all environmental variables.

variable=value

Whenever we declare a variable, that variable will be available in the current
terminal or shell. This variable will not be available to any other processes,
terminal, or shell.

Let's write a Shell script as follows:

#!/bin/bash
This script clears the window, greets the user,
and displays the current date and time.

Chapter 5

[67]

clear # Clear the window
echo "SCRIPT BEGINS"
echo "Hello $LOGNAME!" # Greet the user
echo

echo "Today's date and time:"
date # Display current date and time
echo # Will print empty line

my_num=50
my_day="Sunday"

echo "The value of my_num is $my_num"
echo "The value of my_day is $my_day"
echo

echo "SCRIPT FINISHED!!"
echo

Let's see the effect of $, "", '' and \ on variable behavior:

#!/bin/bash

planet="Earth"

echo $planet
echo "$planet"
echo '$planet'
echo \$planet

echo Enter some text
read planet

Exploring Expressions and Variables

[68]

echo '$planet' now equals $planet

exit 0

Output:

You will learn about the read command in the next chapters. Using read, we can ask
the user to enter data, which can be stored in a variable.

From the preceding script execution, we can observe that $variable and "$
variable" can be used for displaying the content of the variable. But if we use
'$variable' or \$variable, then special functionality of the $ symbol is not
available. The $ symbol is used as a simple text character instead of utilizing its
special functionality of getting variable content.

Working with environment variables
Environmental variables are inherited by any subshells or child processes.
For example, HOME, PATH. Every shell terminal has the memory area called
environment. Shell keeps all details and settings in the environment. When we
start a new terminal or shell, this environment is created every time.

We can view environment variables by the following command:

$ env

Or:

$ printenv

Chapter 5

[69]

Output:

This is the output of the $ env command. The list of environment variables will be
quite extensive. I advise you to browse through the complete list. We can change the
content of any of these environment variables.

Environmental variables are defined in a terminal or shell. They will be available
in subshells or child shells created from the current shell terminal. You will learn
about these activities in the next few sections. You have already learned that every
command in shell creates a new subshell from the current shell.

The following is a brief summary of the few environmental variables:

Exploring Expressions and Variables

[70]

Whenever any user logs in, the /etc/profile Shell script is executed.

For every user, the .bash_profile Shell script is stored in the home folder.
The complete path or location is /home/user_name/.profile.

Whenever a new terminal is created, every new terminal will execute the script
.bashrc, which is located in the home folder of every user.

The local variable and its scope
In the current shell, we can create and store user defined variables. These may
contain characters, digits, and "_". A variable should not start with a digit.
Normally for environment variables, upper case characters are used.

If we create a new variable, it will not be available in subshells. The newly created
variable will be available only in the current shell. If we run Shell script, then local
variables will not be available in the commands called by Shell script. Shell has one
special variable $$. This variable contains the process ID of the current shell.

Let's try a few commands:

$ echo $$

1234

This is the process ID of the current shell.

$ name="Ganesh Naik"

$ echo $name

Ganesh Naik

We declared the variable name and initialized it.

$ bash

This command will create a new subshell.

$ echo $$

1678

This is the process ID of the newly created subshell.

$ echo $name

Nothing will be displayed, as the local variables from the parent shell are not
inherited in the newly created child shell or subshell:

$ exit

Chapter 5

[71]

We will exit the subshell and return to the original shell terminal.

$ echo $$

1234

This is the process ID of the current shell or parent shell.

$ echo $name

Ganesh Naik

This is displaying the variable's presence in the original shell or parent shell.

Variables created in the current shell will not be available in a subshell or child shell.
If we need to use a variable in a child shell, then we need to export them using the
export command.

Exporting variables
Using the export command, we are making variables available in the child process
or subshell. But if we declare new variables in the child process and export it in the
child process, the variable will not be available in parent process. The parent process
can export variables to child, but the child process cannot export variables to the
parent process.

Whenever we create a Shell script and execute it, a new shell process is created and
the Shell script runs in that process. Any exported variable values are available to the
new shell or to any subprocess.

We can export any variable as follows:

$ export NAME

Or:

$ declare -x NAME

Let's understand the concept of exporting the variable by the following example:

$ PERSON="Ganesh Naik"

$ export PERSON

$ echo $PERSON

Ganesh Naik

$ echo $$

515

Exploring Expressions and Variables

[72]

The process ID of the current shell or parent shell is 515.

$ bash

This will start a subshell.

$ echo $$

555

This is the process ID of new or subshell.

$ echo $PERSON

Ganesh Naik

$ PERSON="Author"

$ echo $PERSON

Author

$ exit

This will terminate the subshell, and will be placed in the parent shell.

$ echo $$

515

This is the process ID of the parent shell.

$ echo $PERSON

Author

Let's write Shell script to use the concept we learned:

Ubuntu Timezone files location : /usr/share/zoneinfo/
redhat "/etc/localtime" instead of "/etc/timezone"
In Redhat
ln -sf /usr/share/zoneinfo/America/Los_Angeles /etc/localtime

export TZ=America/Los_Angeles
echo "Your Timezone is = $TZ"
date
export TZ=Asia/Tokyo
echo "Your Timezone is = $TZ"
date

unset TZ

Chapter 5

[73]

echo "Your Timezone is = $(cat /etc/timezone)"
For Redhat or Fedora /etc/localtime
date

The date command checks the TZ environmental variable. We initialized the TZ
for Los_Angeles, then to Tokyo, and then finally we removed it. We can see the
difference in the date command output.

Let's write another Shell script to study the parent and child process and exportation
of variables.

Create the export1.sh Shell script:

#!/bin/bash
foo="The first variable foo"
export bar="The second variable bar"
./export2.sh

Create another shell script export2.sh
#!/bin/bash
echo "$foo"
echo "$bar"

The Shell script export1.sh runs as a parent process and export2.sh is started as a
child process of export1.sh. We can clearly observe that the variable bar, which
was exported, is available in the child process; but variable foo, which was not
exported, is not available in the child process.

Exploring Expressions and Variables

[74]

Working with read-only variables
During Shell scripting, we may need a few variables, which cannot be modified.
This may be needed for security reasons. We can declare variables as read-only
using following command read-only:

The usage is as follows:

$ readonly currency=Dollars

Let's try to remove the variable:

$ unset currency

bash: unset: currency: cannot unset: readonly variable

If we try to change or remove the ready-only variable in the script, it will give the
following error:

#!/bin/bash
AUTHOR="Ganesh Naik"
readonly AUTHOR
AUTHOR="John"

This would produce the following result:

/bin/sh: AUTHOR: This variable is read only.

Another technique:

Declare -r variable=1
echo "variable=$variable"
((var1++))

Output after execution of the script:

line 4: variable: readonly variable

Working with command line arguments
(special variables, set and shift, getopt)
Command line arguments are required for the following reasons:

• They inform the utility or command as to which file or group of files to
process (reading/writing of files)

• Command line arguments tell the command/utility which option to use

Chapter 5

[75]

Check the following command line:

student@ubuntu:~$ my_program arg1 arg2 arg3

If my_command is a bash Shell script, then we can access every command line
positional parameters inside the script as follows:

$0 would contain "my_program" # Command
$1 would contain "arg1" # First parameter
$2 would contain "arg2" # Second parameter
$3 would contain "arg3" # Third parameter

The following is the summary of positional parameters:

$0 Shell script name or command
$1–$9 Positional parameters 1–9
${10} Positional parameter 10
$# Total number of parameters
$* Evaluates to all the positional parameters
$@ Same as $*, except when double quoted
"$*" Displays all parameters as "$1 $2 $3", and so on
"$@" Displays all parameters as "$1" "$2" "$3", and so on

Let's create a script param.sh as follows:

#!/bin/bash
echo "Total number of parameters are = $#"
echo "Script name = $0"
echo "First Parameter is $1"
echo "Second Parameter is $2"
echo "Third Parameter is $3"
echo "Fourth Parameter is $4"
echo "Fifth Parameter is $5"
echo "All parameters are = $*"

Then as usual, give execute permission to script and then execute it:

./parameter.sh London Washington Delhi Dhaka Paris

Output:

Total number of parameters are = 5

Command is = ./parameter.sh

First Parameter is London

Exploring Expressions and Variables

[76]

Second Parameter is Washington

Third Parameter is Delhi

Fourth Parameter is Dhaka

Fifth Parameter is Paris

All parameters are = London Washington Delhi Dhaka Paris

Understanding set
Many times we may not pass arguments on the command line, but we may need to
set parameters internally inside the script.

We can declare parameters by the set command as follows:

$ set USA Canada UK France

$ echo $1

USA

$ echo $2

Canada

$ echo $3

UK

$ echo $4

France

We can use this inside the set_01.sh script as follows:

#!/bin/bash
set USA Canada UK France
echo $1
echo $2
echo $3
echo $4

Run the script as:

$./set.sh

Output:

USA

Canada

UK

France

Chapter 5

[77]

Table declare Options
Option Meaning
–a An array will be created
–f Displays function names and definitions
–F Displays only the function names
–i Makes variables integer types
–r Makes variables read-only
–x Exports variables

We give commands as follows:

set One Two Three Four Five

echo $0 # This will show command

echo $1 # This will show first parameter

echo $2

echo $* # This will list all parameters

echo $# # This will list total number of parameters

echo ${10} ${11} # Use this syntax for parameters for 10th and

 # 11th parameters

Let us write script set_02.sh as follows:

#!/bin/bash
echo The date is $(date)
set $(date)
echo The month is $2
exit 0

Output:

In the script $(date), the command will execute and the output of that command
will be used as $1, $2, $3 and so on. We have used $2 to extract the month from the
output.

Exploring Expressions and Variables

[78]

Let's write script set_03.sh as follows:

#!/bin/bash

echo "Executing script $0"
echo $1 $2 $3

set eins zwei drei
echo "One two three in German are:"
echo "$1"
echo "$2"
echo "$3"

textline="name phone address birthdate salary"
set $textline
echo "$*"
echo 'At this time $1 = ' $1 'and $4 = ' $4

Output:

In this script, the following output shows:

1. Initially when the set is not called, then $1, $2, $3 do not contain any
information.

2. Then, we set $1 to $3 as GERMAN numerals in words.
3. Then, set $1 to $5 as name, phone, address, birthdate, and salary, respectively.

Chapter 5

[79]

Understanding shift
Using shift, we can change the parameter to which $1 and $2 are pointing to the
next variable.

Create a script shift_01.sh as follows:

#!/bin/bash
echo "All Arguments Passed are as follow : "
echo $*
echo "Shift By one Position :"
shift
echo "Value of Positional Parameter $ 1 after shift :"
echo $1
echo "Shift by Two Positions :"
shift 2
echo "Value of Positional Parameter $ 1 After two Shifts :"
echo $1

Execute the command as follows:

$ chmod +x shift_01.sh

$./shift_01.sh One Two Three Four

Output:

student@ubuntu$./shift_01.sh One Two Three Four

All arguments passed are as follows:

One Two Three Four

Shift by one position.

Here, the value of the positional parameter $1 after shift is:

Two

Shift by two positions.

The value of the positional parameter $1 after two shifts:

Four

We observed that initially $1 was One. After shift, $1 will be pointing to Two.
Once shift is done, the value in position 1 is always destroyed and is inaccessible.

Exploring Expressions and Variables

[80]

Create a shift_02.sh script as follows:

#!/bin/bash

echo '$#: ' $#
echo '$@: ' $@
echo '$*: ' $*
echo
echo '$1 $2 $9 $10 are: ' $1 $2 $9 $10
echo

shift
echo '$#: ' $#
echo '$@: ' $@
echo '$*: ' $*
echo
echo '$1 $2 $9 are: ' $1 $2 $9

shift 2
echo '$#: ' $#
echo '$@: ' $@
echo '$*: ' $*
echo
echo '$1 $2 $9 are: ' $1 $2 $9

echo '${10}: ' ${10}

Chapter 5

[81]

In this script execution, the following output shows:

1. Initially, $1 to $13 were numerical values 1 to 13, respectively.
2. When we called the command shift, then $1 shifted to number 2 and

accordingly all $numbers are shifted.
3. When we called the command shift 2, then $1 shifted to number 4 and

accordingly all $numbers are shifted.

Resetting positional parameters
In certain situations, we may need to reset original positional parameters.

Let's try the following:

set Alan John Dennis

This will reset the positional parameters.

Now $1 is Alan, $2 is John, and $3 is Dennis.

Inside the scripts, we can save positional parameters in a variable as follows:

oldargs=$*

Then, we can set new positional parameters.

Later on, we can bring back our original positional parameters as follows:

set $oldargs

Understanding getopts
Command line parameters passed along with commands are also called as
positional parameters. Many times, we need to pass options such as –f and -v
along with positional parameter.

Let's learn the example for passing the –x or –y options along with commands.
Write the Shell script getopt.sh as follows:

#!/bin/bash

USAGE="usage: $0 -x -y"

while getopts :xy: opt_char
do

Exploring Expressions and Variables

[82]

 case $opt_char in
 x)
 echo "Option x was called."
 ;;
 y)
 echo "Option y was called. Argument called is $OPTARG"
 ;;
 \?)
 echo "$OPTARG is not a valid option."
 echo "$USAGE"
 ;;
 esac
done

Execute this program:

$./getopt.sh

You will be learning switch and case statements in the next chapters. In this script, if
option –x is passed, a case statement for x will be executed. If the –y option is passed,
then a case statement for –y will be executed. Since no option is passed, there will not
be any output on the screen.

$./getopt.sh –x

Output:

Option x was called."

$./getopt.sh –y my_file

Output:

Option y was called. Argument called is my_file.

$./getopt.sh –x –y my_file

Output:

Option x was called.

Option y was called. Argument called is my_file.

$./getopt.sh –y my_file -x

Output:

Option y was called. Argument called is my_file.

Option x was called.

Chapter 5

[83]

Understanding default parameters
Many times we may pass certain parameters from the command line; sometimes,
we may not pass any parameters at all. We may need to have certain default
values to be initialized to certain variables.

We will understand this concept by the following script.

Create a default_argument_1.sh script as follows:

#!/bin/bash
MY_PARAM=${1:-default}
echo $MY_PARAM

Execute the script and check:

$ chmod +x default_argument_1.sh One

$./default_argument_1.sh One

One

$./default_argument_1.sh

default

Create another default_argument_2.sh script:

#!/bin/bash
variable1=$1
variable2=${2:-$variable1}
echo $variable1
echo $variable2

Output:

Exploring Expressions and Variables

[84]

We executed the script two times:

• When we passed two arguments, then variable1 was $1 and variable2
was $2.

• In second case, when we passed only one argument, then $1 was taken
as a default argument for $2. Therefore, variable1 was used as default
variable2. If we do not give a second parameter, then the first parameter
is taken as a default second parameter.

Working with arrays
An array is a list of variables. For example, we can create an array FRUIT, which will
contain many fruit names. The array does not have a limit on how many variables it
may contain. It can contain any type of data. The first element in an array will have
the index value as 0:

student@ubuntu:~$ FRUITS=(Mango Banana Apple)

student@ubuntu:~$ echo ${FRUITS[*]}

Mango Banana Apple

student@ubuntu:~$ echo $FRUITS[*]

Mango[*]

student@ubuntu:~$ echo ${FRUITS[2]}

Apple

student@ubuntu:~$ FRUITS[3]=Orange

student@ubuntu:~$ echo ${FRUITS[*]}

Mango Banana Apple Orange

Creating an array and initializing it
You will learn about creating an array in the Bash shell.

If the array name is FRUIT, then we can create an array as follows:

FRUIT[index]=value

Index is the integer value. It should be 0 or any positive integer value.

We can also create an array as follows:

$ declare -a array_name

$ declare -a arrayname=(value1 value2 value3)

Chapter 5

[85]

Example:

$ declare -a fruit=('Mango' 'Banana' 'Apple' 'Orange' 'Papaya')

$ declare -a array_name=(word1 word2 word3 ...)

$ declare -a fruit=(Pears Apple Mango Banana Papaya)

$ echo ${fruit[0]}

Pears

$ echo ${fruit[1]}

Apple

$ echo "All the fruits are ${fruit[*]}"

 All the fruits are Pears Apple Mango Banana Papaya

$ echo "The number of elements in the array are ${#fruit[*]}"

 The number of elements in the array are 3

$ unset fruit or unset ${fruit[*]}

Accessing array values
Once we have initialized an array, we can access it as follows:

${array_name[index]}

We will create the script array_01.sh as follows:

#!/bin/bash

FRUIT[0]="Pears"
FRUIT[1]="Apple"
FRUIT[2]="Mango"
FRUIT[3]="Banana"
FRUIT[4]="Papaya"
echo "First Index: ${FRUIT[0]}"
echo "Second Index: ${FRUIT[1]}"

output:

$ chmod +x array_01.sh

$./array_01.sh

First Index: Pears

Second Index: Apple

Exploring Expressions and Variables

[86]

To display all the items from the array, use the following commands:

${FRUIT[*]}

${FRUIT[@]}

Create an array_02.sh script as follows:

#!/bin/bash
FRUIT[0]="Pears"
FRUIT[1]="Apple"
FRUIT[2]="Mango"
FRUIT[3]="Banana"
FRUIT[4]="Papaya"
echo "Method One : ${FRUIT[*]}"
echo "Method Two : ${FRUIT[@]}"

Output:

$ chmod +x array_02.sh

$./ array_02.sh

Method One : Pears Apple Mango Banana Papaya

Method Two : Pears Apple Mango Banana Papaya

Let's see few more examples:

$ city[4]=Tokyo

The fourth member of the array, city, is being assigned Tokyo. Since it is the only
element in the array, array the size will be 1.

$ echo ${city[*]}

Tokyo

The size of the array city is 1, since any other member of the array is not yet
initialized.

${city[*]} will display the only element of the array city.

$ echo ${city[0]}

city[0] has no value, and neither does city[1] and city[2].

$ echo ${city[4]}

Tokyo

city[4] has the name of city as Tokyo.

$ countries=(USA [3]=UK [2]=Spain)

Chapter 5

[87]

The array countries are being assigned USA at index 0, UK at index 3, and Spain
at index 2. We can observe here that it does not matter in which sequence we are
initializing the members of the array. They need not be in same sequence.

$ echo ${countries[*]}

USA Spain UK

$ echo ${countries[0]}

USA

The first element of the countries array is printed.

$ echo ${countries[1]}

There is nothing stored in countries [1].

$ echo ${countries[2]}

Spain

The third element of the countries array, countries [2], was assigned Spain.

$ echo ${countries[3]}

UK

The fourth element of the countries array, countries [3], was assigned UK.

Summary
In this chapter, you learned about variables and environment variables. You also
learned about how to export environment variables, set, shift, read-only variables,
command line arguments, and about creating and handling arrays.

In the next chapter, you will learn about debugging, the here operator, interactive
Shell scripts for taking input from keyboard, and file handling.

[89]

Neat Tricks with
Shell Scripting

In the last chapter, you learned about shell and environment variables. You also
learned about how to export environment variables, read-only variables,
command-line arguments, and create/handle arrays.

In this chapter, we will cover following topics:

• Interactive Shell scripts and reading from the keyboard
• Using the here operator (<<) and here string (<<<)
• File handling
• Enabling debugging
• Syntax checking
• Shell tracing

Interactive Shell scripts – reading user
input
The read command is a shell built-in command for reading data from a file or
keyboard.

The read command receives the input from the keyboard or a file until it receives a
newline character. Then, it converts the newline character into a null character:

1. Read a value and store it in the variable, shown as follows:
read variable

echo $variable

Neat Tricks with Shell Scripting

[90]

This will receive text from the keyboard. The received text will be stored in
the variable.

2. Command read with prompt. Whenever we need to display the prompt
with certain text, we use the –p option. The option -p displays the text that
is placed after –p on the screen:
#!/bin/bash
following line will print "Enter value: " and then read data
The received text will be stored in variable value
read -p "Enter value : " value

Output:
Enter value : abcd

3. If the variable name is not supplied next to the read command, then the
received data or text will be stored in a special built-in variable called REPLY.
Let's write a simple script read_01.sh, shown as follows:
#!/bin/bash
echo "Where do you stay ?"
read # we have not supplied any option or variable
echo "You stay in $REPLY"

Save the file, give the permission to execute, and run the script as follows:
$ chmod u+x read_01.sh

$./read_01.sh

Output:
"Where do you stay?"

Mumbai

"You stay at Mumbai"

4. We will write the script read_02.sh. This script prompts the user to enter
their first and last name to greet the user with their full name:
#!/bin/bash
echo "Enter first Name"
read FIRSTNAME
echo "Enter Last Name"
read LASTNAME
NAME="$FIRSTNAME $LASTNAME"
echo "Name is $NAME"

Chapter 6

[91]

5. For reading text and storing in multiple variables, the syntax is as follows:
$ read value1 value2 value3

Let's write Shell script read_03.sh, shown as follows:
#!/bin/bash
echo "What is your name?"
read fname mname lname
echo "Your first name is : $fname"
echo "Your middle name is : $mname"
echo "Your last name is : $lname"

Save the file, give the permission to execute, and run the script as follows:
What is your name?
Ganesh Sanjiv Naik
"Your first name is : Ganesh"
"Your middle name is : Sanjiv"
"Your last name is : Naik"

6. Let's learn about reading a list of words and storing them in an array:
#!/bin/bash
echo -n "Name few cities? "
read -a cities
echo "Name of city is ${cities[2]}."

Save the file, give the permission to execute, and run the script as follows:
Name few cities? Delhi London Washington Tokyo
Name of city is Washington.

In this case, the list of cities is stored in the array of cities. The elements in the
array are here:
cities[0] = Delhi

cities[1] = London

cities[2] = Washington

cities[3] = Tokyo

The index of the array starts with 0, and in this case, it ends at 3. In this case,
four elements are added in the cities[] array.

7. If we want the user to press the Enter key, then we can use the read
command along with one unused variable, shown as follows:
Echo "Please press enter to proceed further "

read temp

echo "Now backup operation will be started ! "

Neat Tricks with Shell Scripting

[92]

Summarizing the read command with options
The following table summarizes various read command-related options that you
learned in the previous sections:

Format Meaning
read This command will read text from a keyboard and store the

received text in a built-in variable REPLY.
read value This reads a text from a keyboard or standard input and stores it

into the variable value.
read first last This will read the first word in variable first and the remaining

text of the line in variable last. The first word is separated by
white space from the remaining words in the line.

read –e This is used in interactive shells for command-line editing. If vi
editor is used, then vi commands can be used.

read –a array_name This will store a list of words received in to an array.
read –r line The text with backslash can be received here.
read –p prompt This will print the prompt and wait for the user input.

The received text will be stored in the variable REPLY.

The here document and the << operator
It is a special type of block of text or code. It is also a special form of I/O redirection.
It can be used to feed the command list to an interactive program.

The syntax of the usage of the here document or the << operator is as follows:

command << HERE

text1 …..

text 2….

HERE

This tells the shell that the command should receive the data from a current source,
such as the here document, until the pattern is received. In this case, the pattern
is HERE. We have used the delimiter as HERE. We can use any other word as the
delimiter, such as quite or finish. All the text reads up to a pattern; or the HERE text is
used as an input for command. The text or file received by the command is called as
the Here document:

Chapter 6

[93]

$ cat << QUIT

> first input line

> ...

> last input line

> QUIT

The block of text inserted after and before QUIT will be treated as a file. This content
will be given as input to the command cat. We will also see more examples with
various other commands, such as sort, wc, and similar.

Let's write the script here_01.sh:

#!/bin/bash
cat << quit
 Command is $0
 First Argument is $1
 Second Argument is $2
Quit
Save the file, give execute permission and run the script as follows:
$ chmod here_01.sh
$./here_01.sh Monday Tuesday

Output:

 Command is here_01.sh

 First Argument is Monday

 Second Argument is Tuesday

The text block created in the preceding script between the quit words is called as the
here document. We can treat this here document as a separate document. It can
also be treated as multiple line input redirected to a Shell script.

Let's learn a few more sample programs.

The here operator with the sort command
Let's write script for using the sort command along with the here document:

1. Write the script here_02.sh as follows:
#!/bin/bash
sort << EOF
> cherry
> mango
> apple
> banana
> EOF

Neat Tricks with Shell Scripting

[94]

2. Save the file, give the permission to execute, and run the script as follows:
$ chmod u+x here_02.sh

$./here_02.sh

3. The output is here:
apple

banana

cherry

mango

In this script, the here document is enclosed between the EOF pattern. We have used
the here document to supply text to the sort command.

The here operator with the wc command
Let's write script for using the wc command along with the here document:

1. Create Shell script here_03.sh:
#!/bin/bash
wc -w << EOF
There was major earthquake
On April 25, 2015
in Nepal.
There was huge loss of human life in this tragic event.
EOF

2. Save the file, give the permission to execute, and run the script as follows:
$ chmod u+x here_03.sh

$./here_03.sh

3. The output is here:
21

In this script, we have used the here document as an input for the wc command to
calculate the number of words:

Tape backup using << here operator

Chapter 6

[95]

Let's write a script for taking the tape backup by using the tar command and the
here document:

1. Let's write the script here_04.sh:
#!/bin/bash
We have used tar utility for archiving home folder on tape
tar -cvf /dev/st0 /home/student 2>/dev/null

store status of tar operation in variable status
[$? -eq 0] && status="Success" || status="Failed"

Send email to administrator
mail -s 'Backup status' ganesh@levanatech.com << End_Of_Message
The backup job finished.
End date: $(date)
Status : $status
End_Of_Message

2. Save the file, give the permission to execute, and run the script as follows:
$ chmod u+x here_04.sh

$./here_04.sh

This script uses the tar command to archive the home folder in the tape device, and
then it sends mail to an administrator using the command mail. We have used the
here document to feed data into the command mail.

The utility ed and here operator
The ed is a basic type of editor. We can edit text files using this editor:

1. Write the script here_05.sh:
#!/bin/bash
flowers.txt contains the name of flowers
cat flowers.txt
ed flowers.txt << quit
,s/Rose/Lily/g
w
q
quit
cat flowers.txt

Neat Tricks with Shell Scripting

[96]

2. Save the file, give the permission to execute, and run the script as follows:
$ chmod u+x here_05.sh

$./here_05.sh

3. The output is here:
 Aster, Daffodil, Daisy, Jasmin, Lavender, Rose, Sunflower

 59

 59

 Aster, Daffodil, Daisy, Jasmin, Lavender, Lily, Sunflower

In this script, we have used passed the here document to utility for editing the file
flowers.txt. We replaced the Rose word with Lily.

A script for sending messages to all logged-in users
All the users who are logged in will receive the message using the wall command:

1. Write the script here_06.sh:
#!/bin/bash
wall utility is used for sending message to all logged in users
wall << End_Of_Message
Tomorrow, on Friday evening, we will be celebrating
Birthday of few of our colleagues.
All are requested to be present in cafeteria by 3.30 PM.
 John
End_Of_Message
echo "Message sent"

2. Save the file, give the permission to execute, and run the script as follows:
$ chmod u+x here_06.sh

$./here_06.sh

The command wall is used to send messages to the logged-in users. All the users
that are logged in will receive the message.

Using the << here operator for FTP usage and
data transfer
FTP is a commonly used protocol to transfer data on websites. FTP stands for File
Transfer Protocol. The following steps show the usage of FTP and data transfer:

Chapter 6

[97]

1. Write the script here_07.sh:
#!/bin/bash
Checking number of arguments passed along with command
if [$# -lt 2]
then
 echo "Error, usage is:"
 echo "ftpget hostname filename [directory]."
 exit -1
fi
hostname=$1
filename=$2
directory="." # Default value
if [$# -ge 3]
then
 directory=$3
fi
ftp <<End_Of_Session
open $hostname
cd $directory
get $filename
quit
End_Of_Session
echo "FTP session ended."

2. Save the file, give the permission to execute, and run the script as follows:
$ chmod u+x here_07.sh

$./here_07.sh ftp.somehost.com index.html WWW

For a successful execution of the script, we need to set up an autologin for the ftp
command. The here operator does not work well when the ftp command asks for a
username and password.

Turning off variable substitution
Enter the following script to see how to avoid a variable substitution in these files:

1. Save the script under the name here_no.sh, shown as follows:
filename="test1"
cat <<'Quoted_End_Marker'
When we add quotes before and after here
Document marker, we can include variables
Such as $USER, $PATH, $name and similar
Quoted_End_Marker

Neat Tricks with Shell Scripting

[98]

2. When you run this script, you will see the output like the following:
$ bash here_no.sh

With quotes around the here document marker,

you can include variable references such

as $HOME, $filename, and $USER.

This script uses an ordinary here file, but it turns off the variable substitution.
Otherwise, you would see the values of $HOME, $filename, and $USER in the output
instead of the literal text. All of this is done by magically enclosing the end marker,
Quoted_End_Marker, in quotes at the original reference. Do not enclose the marker
in quotes at the end of the here file.

The here string and the <<< operator
The here string is used for input redirection from text or a variable. Input is
mentioned on the same line within single quotes ('').

The syntax is as follows:

$ command <<< 'string'

1. Let's see the following example hereString_01.sh:
#!/bin/bash
wc –w <<< 'Good Morning and have a nice day !'

2. Save the file, give the permission, and run the script as follows:
$ chmod u+x hereString_01.sh

$./hereString_01.sh

3. Here is the output:
8

In this example, the string Good Morning and have a nice day ! is called as the
here string.

File handling
In this section, you will learn about handling files for reading and writing. In Chapter 8,
Automating Decision Making in Scripts, you will learn about checking various attributes
of files along with decision making constructs, such as if, case, and similar.

Chapter 6

[99]

Introducing file handling
The exec command is very interesting. Whenever we run any command in shell, the
new subshell or process gets created, and the command runs in this newly created
process. When we run any command as argument to the exec command, exec will
replace the current shell with the command to be executed. It does not create or
spawn a new process to run the command.

Using exec to assign file descriptor (fd) to file
In the Bash shell environment, every process has three files opened by default.
These are standard input, display, and error. The file descriptors associated with
them are 0, 1, and 2 respectively. In the Bash shell, we can assign the file descriptor
to any input or output file. These are called file descriptors.

The syntax for declaring output.txt as output is as follows:

exec fd > output.txt

This command will declare the number fd as an output file descriptor.

The syntax for closing the file is as follows:

exec fd<&-

To close fd, which is 5, enter the following:

exec 5<&-

We will try to understand these concepts by writing scripts.

Understanding the opening, writing, and
closing of a file
Let's understand the opening, closing, and writing of a file.

Write a Shell script file_01.sh, shown as follows:

#!/bin/bash
We will open file for writing purpose
We are assigning descriptor number 3 for file sample_out.txt
exec 3> sample_out.txt

We are sending output of command "echo" to sample_out.txt file

Neat Tricks with Shell Scripting

[100]

echo "This is a test message for sample_out.txt file" >&3

Run command date & store output in file sample_out.txt
date >&3

Closing file with file descriptor 3
exec 3<&-

Save the file, give the permission to execute, and run the script as follows:

$ chmod u+x file_01.sh

$./file_01.sh

$ cat sample_out.txt

Output:

This is a test message for sample_out.txt file

Tue Sep 29 23:19:22 IST 2015

Understanding reading from a file
Let's write script to read from a file:

Write the script file_02.sh, shown as follows:

#!/bin/bash
We will open file sample_input.txt for reading purpose.
We are assigning descriptor 3 to the file.
exec 3< sample_input.txt

cat <&3
Closing file
exec 3<&-

Save the file, give the permission to execute, and run the script as follows:

$ chmod u+x file_02.sh

We will create the sample_input.txt file as follows:

$ echo "Hello to All" > sample_input.txt

Run the script and check the result:

$./file_02.sh

Output:

Hello to All

Chapter 6

[101]

Understanding reading and writing to a file
In the earlier examples, we opened the file either for reading or writing. Now, we
will see how to open the file for reading and writing purposes:

exec fd<> fileName

If the file descriptor number is not specified, then 0 will be used in its place. The file
will be created if it does not exist. This procedure is useful to update files.

Let's understand following script.

Write the Shell script file_03.sh as follows:

#!/bin/bash
file_name="sample_out.txt"
We are assing fd number 3 to file.
We will be doing read and write operations on file
exec 3<> $file_name

Writing to file
echo """
 Do not dwell in the past,
 do not dream of the future,
 concentrate the mind on the present moment. - Buddha
""" >&3
closing file with fd number 3
exec 3>&-

Using command read on file descriptor (fd)
We can use command read to get data from a file to store it in variables.
The procedure for using the read command to get text from a file is as follows:

read -u fd variable1 variable2 ... variableN

Reading from one file and writing to
another file
Now, we will see how to read from one file and write to another. Let's write script
file_04.sh as follows:

#!/bin/bash
We are assigning descriptor 3 to in_file.txt
exec 3< in_file.txt

Neat Tricks with Shell Scripting

[102]

We are assigning descriptor 4 to out_file.txt
exec 4> out_file.txt

We are reading first line of input.txt
read -u 3 line

echo $line

echo "Writing content of in_file.txt to out_file.txt"
echo "Line 1 - $line " >&4

Closing both the files
exec 3<&-
exec 4<&-

Save the file, give the permission to execute, and run the script as follows:

$ chmod u+x file_04.sh

$ echo "Sun is at the center of Solar System." > in_file.txt

$ cat in_file.txt

Output:

Sun is at the center of Solar System.

$./file_04.sh

Output:

Sun is at the center of Solar System.

Writing content of in_file.txt to out_file.txt

$ cat out_file.txt

Output:

Line 1 - Sun is at the center of Solar System.

In this example, we read the complete line in the variable line and we used the same
variable to write it to another file.

Let's write one more script file_05.sh to get the hostname and addresses:

#!/bin/sh

cp /etc/hosts hosts2

grep -v '^#' hosts2 > hosts3

Chapter 6

[103]

exec 3< hosts3 # opening hosts3 as input file

exec 4> hostsfinal # opening hostsfinal as output file

read <& 3 address1 name_1 extra_info
read <& 3 address2 name_2 extra_info

echo $name_1 $address1 >& 4
echo $name_2 $address2 >& 4

exec 3<&- # Closing hosts3
exec 4<&- # Closing hostsfinal

In this script, we used the variables address1, name_1, extra_info, address2, and
name_2 to store useful information.

Displaying the file descriptor information from the
/proc folder
We will write the script to display the actual file descriptors associated with the file.

Let's write the script file_06.sh, shown as follows:

#!/bin/bash
we are assigning file descriptor 3 to input file test.txt
exec 3< test.txt
we are assigning file descriptor 4 to output.txt
exec 4> output.txt
we are using read command to read line from file
read -u 3 line
echo "Process id of current process is $$"
my_pid=$$
echo "Currently following files are opened by $0 script :"
ls -l /proc/$my_pid/fd

We are closing both files test.txt and output.txt
exec 3<&-
exec 4>&-

Neat Tricks with Shell Scripting

[104]

File handling – reading line by line
You will learn how to use the while loop and the read command to read a file line
by line. You will learn more about the while loop in the upcoming chapters.

Let's write the script file_07.sh, shown as follows:

#!/bin/bash
echo "Enter the name of file for reading"
read file_name
exec<$file_name
while read var_line
do
 echo $var_line
done

For executing the preceding script, we will need to create a file with some text in it.
Then, we will pass this file name for reading purposes.

Executing the command and storing the results in
a file
The following is the syntax for storing the output of a command in a file:

Command >& fd

./script >& fd

The following is the illustrative example script file_08.sh:

#!/bin/bash
exec 4> output.txt
cat /proc/cpuinfo >&4
exec 3<&-

Save the file, give the permission to execute, and run the script as follows:

$ chmod u+x file_08.sh

$./file_08.sh

Output:

Chapter 6

[105]

In this example, we have executed the command cat /proc/cpuinfo and we have
stored the output in file output.txt.

Summarizing usage of the exec command
The following is the summary of the exec command for using various file
handling-related operations:

Command What it does
exec command This command will replace shell and execute it. Therefore, it

will not return to its original shell, which started it.
exec > data.txt This opens data.txt for writing standard output.
exec < data.txt This opens data.txt for reading standard input.
exec 3< data.txt This opens data.txt for reading with descriptor 3.
sort <&3 This will sort data.txt file
exec 4>data.txt This opens data.txt for writing with descriptor 4.
ll >&4 The output of ll is redirected to data.txt.
exec 6<&5 This makes fd 6 a copy of fd 5
exec 4<&– This closes fd 4.

Debugging
In the very old days of computer technology, the initial problems with computers
were due to real insects. Due to this, fault finding was later called as finding a bug.
Therefore, the process of finding and fixing the problems in computers was called
debugging.

Neat Tricks with Shell Scripting

[106]

The process of debugging involves the following:

• Finding out what has gone wrong
• Fixing the problem

In the actual debugging process, you will need to do the following:

• Understand the error message and find out what is the problem with
the script.

• Find the error location in the script.
• Locate the line number from the error message. The following are a few

error messages:
 ° debug_sp: line 11: [7: command not found]

 ° file: line 6: unexpected EOF while looking for matching
`"'

These messages inform the user about the line numbers of script which
contain errors.

• Correct the issue or problematic part of code. We may have to read the line
as well as look backward from this line number for any possible reason for
the error.

Debugging mode – disabling the shell
(option -n)
In the Bash shell, the -n option is a shortcut for noexec (as in no execution). This
option tells the shell to not run the commands. Instead, the shell just checks for
syntax errors.

We can test the script as follows:

$ bash –n hello.sh

The –n option will tell the Bash shell to check the syntax in the Shell script; but not to
execute the Shell script.

Another way to do this is as follows:

#!/bin/bash -n
We have modified shebang line.

Chapter 6

[107]

In this case, we can test the Shell script as follows:

$ chmod u+x hello.sh

$./hello.sh

This option is safe, since the shell commands are not executed. We can catch
incomplete if, for, while, case, and similar programming constructs as well as
many more syntactical errors.

Let's write debug_01.sh:

#!/bin/bash
echo -n "Commands in bin directory are : $var"

for var in $(ls)
do
 echo -n -e "$var "
do
no error if "done" is typed instead of "do"

Save the file, give the permission to execute, and run the script as follows:

$ chmod u+x debug_01.sh

$./debug_01.sh

Output:

Commands in bin directory are : ./hello.sh: line 7: syntax error near
unexpected token `do'

./hello.sh: line 7: `do'

$ bash –n debug_01.sh

Output:

hello.sh: line 7: syntax error near unexpected token `do'

hello.sh: line 7: `do'

Debugging mode – displaying commands
(option -v)
The -v option tells the shell to run in a verbose mode. In practice, this means that the
shell will echo each command prior to executing the command. This will be useful in
locating the line of script that has created an error.

Neat Tricks with Shell Scripting

[108]

We can enable the script execution with the –v option as follows:

$ bash –v hello.sh

Another way is by modifying the shebang line as follows:

#!/bin/bash -v

In this case, we can run the script with the –v option as follows:

$ chmod u+x hello.sh

$./hello.sh

Let's write the script debug_02.sh, shown as follows:

#!/bin/bash
echo "Hello $LOGNAME"
echo "Today is `date`
echo "Your present working directory is $PWD
echo Good-bye $LOGNAME

Save the file, give the permission to execute, and run the script as follows:

$ chmod u+x debug_02.sh

$./debug_02.sh

Output:

Hello student

Today is Fri May 1 00:18:52 IST 2015

Your present working directory is /home/student/work

Good-bye student

Let's enable the –v option for debugging, and run the script again as follows:

$ bash –v debug_02.sh

Output:

#!/bin/bash
echo "Hello $LOGNAME"
"Hello student"
echo "Today is `date`
date
"Today is Fri May 1 00:18:52 IST 2015
echo "Your present working directory is $PWD
"Your present working directory is /home/student/work
echo Good-bye $LOGNAME
Good-bye student

Chapter 6

[109]

Debugging mode – the tracing execution
(option -x)
The -x option, short for xtrace or execution trace, tells the shell to echo each
command after performing the substitution steps. Thus, we will see the value of
variables and commands.

We can trace the execution of the Shell script as follows:

$ bash –x hello.sh

Instead of the previous way, we can modify the shebang line as follows:

#!/bin/bash -x

Let's test the earlier script debug_01.sh as follows:

$ bash –x hello.sh

Output:

$ bash –x debug_02.sh

+ echo Hello student

Hello student

+ date

+ echo The date is Fri May 1 00:18:52 IST 2015

The date is Fri May 1 00:18:52 IST 2015

+ echo Your home shell is /bin/bash

Your home shell is /bin/bash

+ echo Good-bye student

Good-bye student

Let's try the following programs with the –n –v –f and –x options. Here's a sample
program—debug_03.sh:

#!/bin/bash
echo "Total number of parameters are = $#"
echo "Script name = $0"
echo "First Parameter is $1"
echo "Second Parameter is $2"
echo "All parameters are = $*"
echo "File names starting with f* in current folder are :"
ls f*

Neat Tricks with Shell Scripting

[110]

Save the file, give the permission to execute, and run the script as follows:

$ chmod u+x debug_03.sh

$./debug_03.sh One Two

Output:

"Total number of parameters are = 2"

"Script name = ./debug_03.sh"

"First Parameter is India"

"Second Parameter is Delhi"

"All parameters are = India Delhi"

"File names starting with debug_02.sh debug_03.sh in current folder are:
"

debug_02.sh debug_03.sh

Let's test the same script with the –n option, which will check for syntax errors:

$ bash –n debug_03.sh One Two

Let's test the same script with the –v option:

$ bash –v debug_03.sh One Two

Output:

#!/bin/bash

echo "Total number of parameters are = $#"

"Total number of parameters are = 2"

echo "Script name = $0"

"Script name = debug_03.sh"

echo "First Parameter is $1"

"First Parameter is India"

echo "Second Parameter is $2"

"Second Parameter is Delhi"

echo "All parameters are = $*"

"All parameters are = India Delhi"

echo "File names starting with d* in current folder are :"

"File names starting with debug_02.sh debug_03.sh in current folder are:
"

ls d*

debug_02.sh debug_03.sh

Chapter 6

[111]

Let us test the same script with the –x option:

$ bash –x debug_03.sh One Two

Output:

+ echo $'\342\200\234Total' number of parameters are = $'2\342\200\235'

"Total number of parameters are = 2"

+ echo $'\342\200\234Script' name = $'debug_03.sh\342\200\235'

"Script name = debug_03.sh"

+ echo $'\342\200\234First' Parameter is $'India\342\200\235'

"First Parameter is India"

+ echo $'\342\200\234Second' Parameter is $'Delhi\342\200\235'

"Second Parameter is Delhi"

+ echo $'\342\200\234All' parameters are = India $'Delhi\342\200\235'

"All parameters are = India Delhi"

+ echo $'\342\200\234File' names starting with debug_02.sh debug_03.sh in
current folder are $':\342\200\234'

"File names starting with debug_02.sh debug_03.sh in current folder are:
"

+ ls debug_02.sh debug_03.sh

debug_02.sh debug_03.sh

Let's test one more program, which will give a syntax error during the –n and –x
options debugging. Write the Shell script debug_04.sh as follows:

#!/bin/bash
echo "Commands in bin directory are : $var"

for var in $(ls)
do
 echo -n -e "$var "
do

Save the file, give the permission to execute, and run the script as follows:

$ chmod u+x debug_04.sh

$ bash –n debug_04.sh

Output:

debug_04.sh: line 7: syntax error near unexpected token `do'

debug_04.sh: line 7: `do'

Neat Tricks with Shell Scripting

[112]

The preceding program has a syntax error on line number 7. The word do has an
error. We need to change word "do" to "done".

Summarizing the debugging options for the
Bash shell
The following is a summary of various debugging options used for debugging, such
as -x, -v, and -n with their details:

$ bash –n script_name // interpretation without execution

$ bash –v script_name // Display commands in script

$ bash –x script_name // Trace the execution of script

$ bash –xv script_name // Enable options x and v for debugging

$ bash +xv script_name //Disable options x and v for debugging

Using the set command
Most of the time, we invoke the debugging mode from the first line of script. This
debugging mode will remain active until the last line of code. But many times, we
may need to enable debugging for a particular section of script. By using the set
command, we can enable and disable debugging at any point in our Shell script:

set -x

section of script

set +x

Consider the following script:

#!/bin/bash

str1="USA"
str2="Canada";

[$str1 = $str2]
echo $?

Set –x

[$str1 != $str2]
echo $?

[-z $str1]
echo $?

Chapter 6

[113]

Set +x

[-n $str2]
echo $?

Exit 0

In this case, the debugging will be enabled after the set -x and will be disabled
immediately after the set +x.

Summary of debugging options for set command
The following table summarises the various options for the set command:

Short
notation

Result

set -f Disables globbing. In this case, the file name expansions using wildcards or
metacharacters will be disabled.

set -v This will print the Shell script lines as they are read by the shell.
set -x This option will display each line after the variable substitution and

command expansion, but before execution by the shell. This option is often
called shell tracing.

set -n This reads all commands and checks the syntax, but does not execute them.

The vi editor setting for debugging
For general debugging, we can use the vi editor along with certain options.

During debugging, many times we search for a pattern throughout the complete
document. It is preferable to highlight the searched item. We will enable search
pattern highlighting by using the following command in the vi editor when the
document is opened:

:set hlsearch :set ic vi –b filename

We can even modify the vi editor configuration file—.exrc or .vimrc so that we
need not give the previous command again and again.

Neat Tricks with Shell Scripting

[114]

Good practices for Shell scripts
If we follow certain good practices, then we will face errors. Even if errors are found,
these will be easier to debug:

1. Clear and tidy the script. Try to properly indent the programming constructs,
such as if, for, while, and other similar loops:
if [$rate -lt 3]

then

 echo "Sales tax rate is too small."

fi

2. Do not put multiple commands on the same line by using ;.
3. Use descriptive variable names, such as salary, instead of sa. In very complex

Shell scripts, non-descriptive variable names will make debugging very
difficult.

4. Store the file and directory names in variables instead of typing them again
and again. If any change is required in the directory path, then making the
change in the variable at one place will be sufficient:
WORKING_DIR=$HOME/work

if [-e $WORKING_DIR]

then

 # Do something....

fi

5. Use comments for an easier understating of script. This will make debugging
easier to others. If it contains tricky or complex commands, then even after
few months, we will need comments to understand our own script. A cute
little trick today may become a challenge tomorrow.

6. Print informative error messages. Write simpler scripts. Use simpler if, case,
for, and or functions. It is practically observed that if scripts are simpler,
then these scripts are easy to maintain over a long period of time, such as
few years.

7. Test the script again and again with various test scenarios and test cases.
Check for all the possibilities of human error, such as bad input, insufficient
arguments, nonexistent files, and similar possibilities.

Chapter 6

[115]

Summary
In this chapter, you learned about debugging, the here operator, interactive Shell
scripts for taking input from the keyboard, and file handling.

In the next chapter, you will learn about arithmetic and various operations, such as
addition, subtraction, multiplication, division, and the extraction of the modulus of
numerical variables.

[117]

Performing Arithmetic
Operations in Shell Scripts

In the last chapter, you learned about debugging, the here operator, interactive Shell
scripts for taking input from the keyboard, and file handling.

In this chapter, we will cover the following arithmetic operations topics:

• Addition
• Subtraction
• Multiplication
• Division
• Modulus

We can perform arithmetic operations in various ways, such as using declare, let,
expr, and arithmetic expressions. You will also learn about representing numbers in
different bases, such as binary, octal, and hex.

Using a command declare for arithmetic
Whenever we declare any variable, by default, this variable stores the string type
of data. We cannot do arithmetic operations on them. We can declare a variable as
an integer by using the declare command. Such variables are declared as integers;
if we try to assign a string to them, then bash assigns 0 in these variables.

Bash will report an error if we try to assign fractional values (floating points) to
integer variables.

Performing Arithmetic Operations in Shell Scripts

[118]

We can create an integer variable called value, shown as follows:

$ declare –i value

We tell the shell that the variable value is of type integer. Otherwise, shell treats all
variables as character strings:

• If we try to assign the name string to the integer variable value, then the
value variable will be assigned the 0 value by Bash shell:
$ value=name

$ echo $value

0

• We need to enclose numbers between double quotes, otherwise we should
not use space in arithmetic expressions:
$ value=4 + 4

bash: +: command not found

• When we remove white spaces, the error also gets removed, and the arithmetic
operation takes place.
$ value=4+4

$ echo $value

8

• We can perform a multiplication operation as follows:
$ value=4*3

$ echo $value

12

$ value="4 * 5"

$ echo $value

20

Chapter 7

[119]

• Since we have enclosed numbers in "", the multiplication operation is
performed. Due to double quotes (""), the * operator was not used as a
wildcard (*):
$ value=5.6

bash: num: 5.6: syntax error in expression (remainder of
expression is ".5").

Since we have declared the variable value as an integer variable, when we initialize
the variable with a floating point number, the error gets displayed by Bash shell.

Listing integers
If we want to see all declared integer variables along with their values, then we must
give the following command:

$ declare –i

Output:

declare -ir BASHPID=""

declare -ir EUID="1001"

declare -i HISTCMD=""

declare -i LINENO=""

declare -i MAILCHECK="60"

declare -i OPTIND="1"

declare -ir PPID="1966"

declare -i RANDOM=""

declare -ir UID="1001"

Performing Arithmetic Operations in Shell Scripts

[120]

Using the let command for arithmetic
We can use the bash built-in command let for performing arithmetic operations.
To get more information about let, type the following:

$ help let

Output:

Chapter 7

[121]

Let's start using the let command:

$ value=6

$ let value=value+1

$ echo $value

7

$ let "value=value+4"

$ echo $value

11

$ let "value+=1"

#above expression evaluates as value=value+1

$ echo $value

12

A summary of operators available with the let command follows:

• Operation: Operator
• Unary minus: –
• Unary plus: +
• Logical NOT:!
• Bitwise NOT (negation):~
• Multiply: *
• Divide: /
• Remainder: %
• Subtract: –
• Add:+

Prior to bash 2.x, the following operators were not available:

• Bitwise left shift: <<
• Bitwise right shift: >>
• Equal to and not equal to: ==, !=
• Comparison operators: <=,>=,<,>

Performing Arithmetic Operations in Shell Scripts

[122]

• Bitwise AND: &
• Bitwise: |
• Bitwise exclusive OR: ^
• Logical AND: &&
• Logical OR: ||
• Assignment and shortcut assignment: = *=/= %= –= += >>= <<= &= |= ^=

Using the expr command for arithmetic
We can use the expr command for arithmetic operations. The expr command
is an external command; the binary of the expr command is stored in the folder
called /usr/bin/expr.

Perform an addition operation as follows:

$ expr 40 + 2

42

Perform a subtraction operation as follows:

$ expr 42 - 2

40

Perform a division operation as follows:

$ expr 40 / 10

4

Perform a modulus (getting remainder) operation as follows:

$ expr 42 % 10
2
$ expr 4 * 10
expr: syntax error

With the expr command, we cannot use * for multiplication. We need to use *
for multiplication:

$ expr "4 * 10"
4 * 10
$ expr 4 * 10
40

Chapter 7

[123]

We will write a simple script to add two numbers. Write the Shell script called
arithmetic_01.sh as follows:

#!/bin/bash
x=5
y=2
z=`expr $x + $y`
echo $z
Test the script as follows:
$ chmod +x arithmetic_01.sh
$./arithmetic_01.sh

The output is here:

7

Let's write a script to perform all the basic arithmetic operations. Write the Shell
script called arithmetic_02.sh as follows:

#!/bin/bash
var1=30
var2=20
echo `expr $var1 + $var2` # Arithmetic Addition
echo `expr $var1 - $var2` # Arithmetic Subtraction
echo `expr $var1 * $var2` # Arithmetic Multiplication
echo `expr $var1 / $var2` # Arithmetic Division
echo `expr $var1 % $var2` # Arithmetic Modular Division
 # (Remainder)
Let us test the script
$ chmod +x arithmetic_02.sh
$./arithmetic_02.sh

The output is here:

50

10

600

1

10

www.allitebooks.com

http://www.allitebooks.org

Performing Arithmetic Operations in Shell Scripts

[124]

Using an arithmetic expansion
We can use two different ways for evaluating arithmetic expressions:

$((expression))

$[expression]

Learn arithmetic operations using the preceding mentioned arithmetic expansion:

$ a=10

$ b=20

$ c=$((a + b))

$ echo $c

During arithmetic operations, we may need to find square or cube of any given
number. These operations are called as exponent operations. We can perform
exponent operations as follows:

$ a=5

$ b=3

$ expo=$[$a ** $b]# This is equivalent to ab

$ echo $expo

125

This is the result of the 53 operations.

Another way of arithmetic expansions is as follows:

$ B=10

$ A=$[B + 10]

$ echo $A

20

$ echo $[3 + 4 - 5]

2

$ echo $[3 + 4 * 5]

23

Chapter 7

[125]

Arithmetic multiplication has more precedence over addition. Therefore, 4*5 was
performed first, and the addition of 3+20 was performed later on:

$ echo $[(3 + 4) * 5]

35

$ echo $((3 + 4))

7

$ echo $((6 / 0))

bash: 6/0: division by 0 (error token is "0")

We will use many of the preceding arithmetic techniques for doing the same addition
operation and check the result.

Let's write an interactive script called arithmetic_03.sh as follows:

#!/bin/bash
echo "Enter first value"
read number_1
echo "Enter secondvalue"
read number_2
total=`expr $number_1 + $number_2`
echo $total
sum=$(($number_1 + $number_2))
echo "sum is "$sum
echo "Sum is $[$number_1+$number_2]"

Let us test the script

$ chmod +x arithmetic_03.sh
$./arithmetic_03.sh

Output

Enter first value
10
Enter second value
5
15
Sum is 15
Sum is 15

The preceding Shell script shows that even if we use any of the previous techniques,
the result remains the same.

Performing Arithmetic Operations in Shell Scripts

[126]

Let's write the shell called script arithmetic_04.sh as follows:

#!/bin/bash
Interactive Shell Script Demonstrating Arithmetic Operators
echo "Enter First value"
read number_1
echo "Enter Second value"
read number_2
echo $(($number_1 + $number_2))
echo $(($number_1 / $number_2)) # Division of two numbers

Let's test the program as follows:

$ chmod +x arithmetic_04.sh

$./arithmetic_04.sh

Output:

Enter First value

10

Enter Second value

5

15

2

We will write one more script with a different technique. Let's write the Shell script
arithmetic_05.sh as follows:

#!/bin/bash
Script is For Demonstrating Arithmetic
var1=10
var2=20
echo $(($var1+$var2)) # Adding Two Values
echo $(($var1-$var2)) # Subtract Two Values
echo $(($var1*$var2)) # Multiply Two Values
echo $(($var1%$var2)) # Remainder

Let's test the program here:

$ chmod +x arithmetic_05.sh

$./arithmetic_05.sh

Chapter 7

[127]

Output:

30

-10

200

10

We will write a script to add five numbers that are passed from a command line.
Let's write the Shell script arithmetic_06.sh as follows:

#!/bin/bash
Write a shell script which will receive 5 numbers from command line
and print their sum.
echo "Sum of Five Numbers is:" $(($1 + $2 + $3 + $4 + $5))

Let's test the program:

$ chmod +x arithmetic_06.sh

$./arithmetic_06.sh 10 20 30 40 50

Output:

Sum of Five Numbers is: 150

Let's write the Shell script arithmetic_07.sh as follows for finding cube, quotient,
and remainder:

#!/bin/bash

x=99

((cube = x * x * x))
((quotient = x / 5))
((remainder = x % 5))

echo "The cube of $x is $cube."
echo "The quotient of $x divided by 5 is $quotient."
echo "The remainder of $x divided by 5 is $remainder."

Note the use of parenthesis to controlling arithmetic operator
precedence evaluation.
((y = 2 * (quotient * 5 + remainder)))
echo "Two times $x is $y."

Performing Arithmetic Operations in Shell Scripts

[128]

Let's test the program:

$ chmod +x arithmetic_07.sh

$./arithmetic_07.sh

Output:

The cube of 99 is 970299.

The quotient of 99 divided by 5 is 19.

The remainder of 99 divided by 5 is 4.

Two times 99 is 198.

Binary, octal, and hex arithmetic
operations
Integer values can be represented in decimal, binary, octal, or hex numeric notations.
By default, integer values are represented in decimal notation. Binary numbers have
base 2. Octal numbers use base 8. Hexadecimals numbers use base 16. We will learn
about various notations with examples in this section.

Syntax:

variable=base#number-in-that-base

Let's understand the preceding syntax with examples:

• Decimal representation:
$ declare -i x=21

$ echo $x

21

• Binary representation:
$ x=2#10101

$ echo $x

21

• Octal representation:
$ declare -i x

$ x=8#25

$ echo $x

21

Chapter 7

[129]

• Hexadecimal representation:
$ declare -i x

$ x=16#15

$ echo $x

21

In the preceding examples, we displayed the, decimal 21 value in binary, octal,
and hexadecimal representations.

A floating-point arithmetic
In Bash shell, we can only perform integer arithmetic. If we want to perform
arithmetic involving a floating point or fractional values, then we will need to
use various other utilities, such as awk, bc, and similar.

Let's see an example of using the utility called bc:

$ echo "scale=2; 15 / 2" | bc

7.50

For using the bc utility, we need to configure a scale parameter. Scale is the number
of significant digits to the right of the decimal point. We have told the bc utility to
calculate 15 / 2, and then display the result with the scale of 2.

Or:

$ bc

((83.12 + 32.13) * 37.3)

4298.82

Many things can be done with the bc utility, such as all types of arithmetic operations
including binary and unary operations; it has many defined mathematical functions.
It has its own programming syntax.

You can get more information about the utility bc at http://www.gnu.org/
software/bc/.

Let's look at using awk for a floating-point arithmetic:

$ result=`awk -v a=3.1 -v b=5.2 'BEGIN{printf "%.2f\n",a*b}'`

$ echo $result

16.12

Performing Arithmetic Operations in Shell Scripts

[130]

You will be learning more about the awk programming in the coming chapters.
Therefore, we will not get into a detailed discussion of awk in this session.

Let's write few more Shell scripts using arithmetic programming skill in shell,
which we have learned so far.

Let's write the Bash Shell script arithmetic_08.sh to find whether an input integer
is even or odd:

#!/bin/bash
echo "Please enter a value"
read x
y=`expr $x%2`
if test $y -eq 0
then
echo "Entered number is even"
else
echo "Entered number is odd"
fi

Let's test the program:

$ chmod +x arithmetic_08.sh

$./arithmetic_08.sh

Output:

$./hello.sh

"Enter a number"

5

"Number is odd"

$./hello.sh

"Enter a number"

6

"Number is even"

Let's write the script arithmetic_09.sh to find the length of an input string:

#!/bin/bash
echo "Please Enter the String:"
read str
len=`echo $str | wc -c`
let len=len-1
echo "length of string = $len"

Chapter 7

[131]

Let's test the script:

$ chmod +x arithmetic_09.sh

$./arithmetic_09.sh

Output:

Enter String:

Hello World

length of string = 11

Let's write a script to calculate the area and circumference of a rectangle and circle.

Write the Shell script arithmetic_10.sh as follows:

#!/bin/bash
echo "Please enter the length, width and radius"
read length width radius
areaRectangle=`expr $length * $width `
temp=`expr $length + $width `
perimeterRect=`expr 2 * $temp`
areaCircle=`echo 3.14 * $radius * $radius | bc`
circumferenceCircle=`echo 2 * 3.14 * $radius | bc`
echo "Area of rectangle = $areaRectangle"
echo "Perimeter of Rectangle = $perimeterRect."
echo "Area of circle = $areaCircle."
echo "Circumference of circle = $circumferenceCircle"
echo

Let's test the program:

$ chmod +x arithmetic_10.sh

$./arithmetic_10.sh

Output:

Enter the length, width and radius

5 10 5

Area of rectangle = 50

Perimeter of Rectangle = 30

Area of circle = 78.50

Circumference of circle = 31.40

Performing Arithmetic Operations in Shell Scripts

[132]

Summary
In this chapter, you learned about performing arithmetic operations in various ways
such as, using declare, let, expr, and arithmetic expressions. You also learned
about representing numbers in different bases such as hex, octal, and binary. You
learned about using the bc utility to perform floating point or fractional arithmetic.

In the next chapter, you will learn about automatic decision making by working with
test and using if-else, case, select, for, while, and dowhile. You will also learn
to control loops using break and continue statements.

[133]

Automating Decision Making
in Scripts

In the last chapter, you learned about performing arithmetic operations in various
ways such as using declare, let, expr, and arithmetic expressions. You also learned
about representing numbers in different bases such as hex, octal, and binary, and
using the bc utility for performing floating point or fractional arithmetic.

In real-world scripts, it is not just a sequential execution of commands, we need
to check certain conditions or proceed as per certain logic and accordingly the
script should continue executing. This is precisely what we do with automation.
Automation refers to performing tasks, the sequence of which will change as per
changes in the programming environment. A simple example would be to check
if the directory is present; if present, then change to that directory, otherwise create
a new directory and proceed. All these activities come under decision making in
Shell scripts.

In this chapter, we will cover the following topics:

• Working with test
• Using if-else
• Switching case
• Using select
• Working with the for loop
• Working with the while loop
• Controlling loops:

 ° The continue statement
 ° The break statement

Automating Decision Making in Scripts

[134]

Checking the exit status of commands
Automation using Shell scripts involves checking if the earlier command executed
successfully or failed, if the file is present or not, and so on. You will learn various
constructs such as if, case, and so on, where we will need to check whether certain
conditions are true or false. Accordingly, our script should conditionally execute
various commands.

Let's enter the following command:

$ ls

Using the Bash shell, we can check if the preceding command executed successfully
or failed as follows:

$ echo $?

The preceding command will return 0, if the ls command executed successfully.
The result will be nonzero, such as 1 or 2 or any other nonzero number, if the
command has failed. The Bash shell stores the status of the last command execution
in a variable. If we need to check the status of the last command execution, then we
should check the content of the variable.

Let's see the following example:

$ x=10

$ y=20

$ ((x < y))

$ echo $?

0

This indicates that the $((x < y)) expression has executed successfully.

Let's learn the same concept in the case of string handling:

$ name=Ganesh

$ grep "$name" /etc/passwd

 Ganesh:9ZAC5G:6283:40:Ganesh Naik:/home/ganesh:/bin/sh

$ echo $?

0

Since the user Ganesh is already created on the computer, the string Ganesh was
found in the /etc/passwd file.

$ name=John

$ grep "$name" /etc/passwd

Chapter 8

[135]

$ echo $?

1 # non zero values means error

Since the user John was not found in the /etc/passwd file, the grep command
returned a nonzero value. In scripts, we can use this during automation.

Understanding the test command
Let's now understand the test command.

Using the test command with single brackets
Let's learn the following example to check the content or value of expressions:

$ test $name = Ganesh

$ echo $?

0 if success and 1 if failure.

In the preceding example, we want to check if the content of the variable name is the
same as Ganesh and ? To check this, we have used the test command. The test will
store the result of the comparison in the ? variable.

We can use the following syntax for the preceding test command. In this case,
we used [] instead of the test command. We've enclosed the expression to be
evaluated in square brackets:

$ [[$name = Ganesh]] # Brackets replace the test command

$ echo $?

0

During the evaluation of expressions by test, we can even use wildcard expressions:

$ [[$name = [Gg]?????]]

$ echo $?

0

Therefore, we can either use the test command or square brackets for checking or
evaluating expressions. Since word splitting will be performed on variables, if we
are using text with white spaces, then we will need to enclose the text inside double
quotes such as " ".

Automating Decision Making in Scripts

[136]

Using the test command with double brackets
Let's consider the case where we want to check whether there is the name Ganesh
and if his friend is John. In this case, we will have multiple expressions to be checked
using the AND operator &&. In such a case, we can use following syntax:

$ [[$name == Ganesh && $friend == "John"]]

Another way to do this is as follows:

[$name == Ganesh] && [$friend == "John"]

We used double brackets in the preceding expressions.

Here, we want to evaluate multiple expressions on the same command line. We can
use the preceding syntax with AND (&&) or OR (||) logical operators.

String comparison options for the test
command
The following is a summary of various options for string comparison using test
which is taken from the Bash reference manual available at http://www.gnu.org/
software/bash/:

Test operator Tests true if
-n string True if the length of string is nonzero.
-z string True if the length of string is zero.
string1 != string2 True if the strings are not equal.
string1 == string2
string1 = string2

True if the strings are equal.

string1 > string2 True if string1 sorts after string2
lexicographically.

string1 < string2 True if string1 sorts before string2
lexicographically.

Suppose we want to check if the length of a string is nonzero, then we can check it
as follows:

test –n $string or [–n $string]

echo $?

If the result is 0, then we can conclude that the string length is nonzero. If the content
of ? is nonzero, then the string is 0 in length.

Chapter 8

[137]

Let's write Shell script test01.sh for learning various string operations:

#!/bin/bash

str1="Ganesh";
str2="Mumbai";
str3=

[$str1 = $str2] # Will Check Two Strings Are Equal Or Not
echo $?

[$str1 != $str2] # Will Check Two Strings Are Not Equal
echo $?

[-n $str1] # Will confirm string length is greater than zero
echo $?

[-z $str3] # Will Confirm length of String is Zero
echo $?

Let's test the following program:

$ chmod +x test01.sh

$./test01.sh

The following will be the output after executing the preceding commands:

1

0

0

0

Let's write an interactive Shell script test02.sh to get names from the user and then
compare if both are the same:

#!/bin/bash
echo "Enter First name"
read name1
echo "Enter Second name"
read name2
[$name1 = $name2] # Check equality of two names
echo $?
[-n $name2] # Check String Length is greater than Zero
echo $?

Automating Decision Making in Scripts

[138]

Let's test the following program:

$ chmod +x test02.sh

$./test02.sh

The following will be the output after executing the preceding commands:

Enter First name

LEVANA

Enter Second name

TECHNOLOGIES

1

0

Numerical comparison operators for the test
command
The following is the summary of various options for numerical comparison
using test:

Let's write the Shell script test03.sh for learning various the numerical test
operators' usage:

#!/bin/bash

num1=10
num2=30

echo $(($num1 < $num2)) # compare for less than
[$num1 -lt $num2] # compare for less than
echo $?

Chapter 8

[139]

[$num1 -ne $num2] # compare for not equal
echo $?
[$num1 -eq $num2] # compare for equal to
echo $?

Let's test the following program:

$ chmod +x test03.sh

$./test03.sh

The following will be the output after executing the preceding commands:

1

0

0

1

Let's write the script test04.sh for interactively asking the user for three numbers
and then testing those numbers for various comparisons:

#!/bin/bash
echo "Please enter 1st First Number"
read num1
echo "Please enter 2nd Number"
read num2
echo "Please enter 3rd Number"
read num3
[[$num1 > $num2]] # compare for greater than
echo $?
[[$num1 != $num2]] # compare for not equal to
echo $?
[[$num2 == $num3]] # compare for equal to
echo $?
[[$num1 && $num2]] # Logical And Operation
echo $?
[[$num2 || $num3]] # Logical OR Operation
echo $?

Let's test the following program:

$ chmod +x test04.sh

$./test04.sh

Automating Decision Making in Scripts

[140]

The following will be the output after executing the preceding commands:

Please enter 1st First Number

10

Please enter 2nd Number

20

Please enter 3rd Number

30

1

0

1

0

0

Let's write the script test05.sh for using string and numerical test operations:

#!/bin/bash
Var1=20
Var2=30
Str1="Accenture"
FileName="TestStringOperator"

test $Var1 -lt $Var2 # Test for Less Than
echo $?
test $Var1 -gt $Var2 # Test For Greater Than
echo $?
test -n $Str1 # Test for String Having Length Greater Than 0
echo $?
test -f $FileName # Test for File Attributes
echo $?

Let's test the following program:

$ chmod +x test05.sh

$./test05.sh

The following will be the output after executing the preceding commands:

0

1

0

1

Chapter 8

[141]

We used the test operation for the file in this script. It will check if the file is present.
You will learn more about it in next section.

Now, we will write the script test06.sh using the test command interactively
asking the user for data and then performing numerical as well as string comparison
operations:

#!/bin/bash
echo "Please enter 1st Number"
read num1
echo "Please enter 2nd Number"
read num2
echo
test $num1 -eq $num2 # Test for Equal
echo $?
test $num1 -ne $num2 # Test for Not Equal
echo $?
test $num1 -ge $num2 # Test for Greater Than Equal
echo $?

echo "Please enter 1st String"
read Str1
echo "Please enter 2nd String"
read Str2

test $Str1 = $Str2 # Test for Two Strings Are Equal
echo $?
test -z $Str1 # Test for The Length Of The String Is > 0
echo $?
test $Str2 # Test for The String Is Not NULL
echo $?

Let's test the following program:

$ chmod +x test06.sh

$./test06.sh

The following will be the output after executing the preceding commands:

Please enter 1st Number

10

Please enter 2nd Number

20

1

Automating Decision Making in Scripts

[142]

0

1

Please enter 1st String

LEVANA

Please enter 2nd String

TECHNOLOGIES

1

1

0

Depending on the value of $? in the preceding output, we can decide whether the
operation returned true or false. We will use this in if, case, and similar decision
making, as well as in looping, activities.

File test options for the test command
The following are the various options for file handling operations using the
test command:

Chapter 8

[143]

File testing binary operators
The following are various options for binary file operations using test which is taken
from the Bash reference manual available at http://www.gnu.org/software/
bash/:

Let's write the script test07.sh to test the basic file attributes such as whether it is a
file or folder and whether it has a file size bigger than 0. The output will be different
if the case file is present or not:

#!/bin/bash
Check if file is Directory
[-d work]
echo $?
Check that is it a File
[-f test.txt]
echo $?
Check if File has size greater than 0
[-s test.txt]
echo $?

Let us test the program:

$ chmod +x test07.sh

$./test07.sh

The following will be the output after executing the preceding commands:

1

1

1

$ mkdir work

$ touch test.txt

$./test07.sh

0

0

1

Automating Decision Making in Scripts

[144]

We executed the script with and without the directory and text.txt file.

The following script test08.sh is checking the file permissions such as read, write,
and execute permissions:

#!/bin/bash
Check if File has Read Permission
[-r File2]
echo $?
Check if File Has Write Permission
[-w File2]
echo $?
Check if File Has Execute Permission
[-x File2]
echo $?

Let's test the program:

$ touch File2

$ ls -l File2

-rw-rw-r-- 1 student student 0 Jun 23 22:37 File2

$ chmod +x test08.sh

$./test08.sh

The following will be the output after executing the preceding commands:

0

0

1

Logical test operators
The following are the various options for logical operations using test which is taken
from the Bash reference manual available at http://www.gnu.org/software/bash/:

Chapter 8

[145]

We can use the test operator for strings along with pattern matching as follows:

$ name=Ganesh
$ [[$name == [Gg]anesh]] # Wildcards allowed
$ echo $?
0

The following is the example for multiple strings with the && logical operator:

$ name=Ganesh; friend=Anil
$ [[$name == [Gg]anesh && $friend == "Lydia"]]
$ echo $?
1

The following is the script with the test command along with the extended pattern
matching enabled:

$ shopt -s extglob # we are enabling extended pattern matching
$ city=Kannur
$ [[$city == [Kk]a+(n)ur]]
$ echo $?
0

In the given expressions, we are checking equality for strings. It tests if the city name
starts with K or k, followed by a, one or more n characters, a u, and r.

Conditional constructs – if else
We use the if command to check the pattern or command status and accordingly we
can make certain decisions to execute scripts or commands.

The syntax of the if conditional is as follows:

 if command
 then
 command
 command
 fi

From the preceding syntax, we can clearly understand the working of the if
conditional construct. Initially, if will execute the command. If the result of
command execution is true or 0, then all the commands that are enclosed between
then and fi will be executed. If the status of command execution after if is false
or nonzero, then all the commands after then will be ignored and the control of
execution will directly go to fi.

Automating Decision Making in Scripts

[146]

Let's learn another variation of if constructs.

Syntax:

 if command
 then
 command
 command
 else
 command
 fi

In the preceding case if the command after if is successfully executed or the status
variable ? content is 0, then all the commands after then will be executed. If the
result of the command is a failure or nonzero, then all the commands after else will
be executed.

For numeric or string expression evaluations using if, the syntax is as follows:

 if [string/numeric expression]
 then
 command
 fi

Alternatively, use the following syntax:

 if [[string expression]]
 then
 command
 fi

Alternatively, use the following syntax:

 if ((numeric expression))
 then
 command
 fi

The simple example to check the status of the last command executed using the if
construct is as follows:

#!/bin/bash
if [$? -eq 0]
then
 echo "Command was successful."
else
 echo "Command was successful."
fi

Chapter 8

[147]

Whenever we run any command, the exit status of command will be stored in the
? variable. The preceding construct will be very useful in checking the status of
the last command.

Numerical handling if constructs
Let's learn about using the if construct for numerical decision making.

We can use the test command for finding which variable contains the
smaller value:

$ X=10
$ y=20
$ ((x < y))
$ echo $?
0
The result 0 shows that x is smaller than y.

In the Shell script if_01.sh, we can use the test command along with the if
construct for checking equality of variable with numerical value as follows:

#!/bin/bash
a=100
if [$a -eq 100]
then
 echo "a is equal to $a"
else
 echo "a is not equal"
fi

Let's test the following program:

$ chmod +x if_01.sh

$./if_01.sh

The following will be the output after executing the preceding commands:

a is equal to 100

Use the script if_02.sh to check which product is costly. The script is
as follows:

#!/bin/bash
echo "Enter the cost of product a"
read a
echo "Enter the cost of product b"
read b

Automating Decision Making in Scripts

[148]

if [$a -gt $b]
then
 echo " a is greater"
else
 echo " b is greater"
fi

Let's test the following program:

$ chmod +x if_02.sh

$./if_02.sh

The following will be the output after executing the preceding commands:

Enter the cost of product a

100

Enter the cost of product b

150

 b is greater

$

Using the command exit and the ? variable
If we need to terminate the Shell script and come back to command line, then we can
use the exit command. The syntax is very simple:

exit 0

The given command will terminate the Shell script and return to the command line.
It will store the 0 value in the status variable ?. We can use any value between 0 and
255. Value 0 means success and any other nonzero value means an error. We can use
these values to indicate error information.

The script to check the value of a parameter, which is passed along with command,
either less than 0 or greater than 30 is as follows. This will save our efforts of using
the nested if statement:

#!/bin/bash
if (($1 < 0 || $1 > 30))
 then
 echo "mdays is out of range"
 exit 2
fi

Chapter 8

[149]

The test command used in the preceding expression for OR can be written as follows:

[$1 -lt 0 -o $1 -gt 30]

String handling with the if construct
Let's learn about using string-related checking using the if command.

The following script if_03.sh will check the equality of two strings:

echo "Enter the first string to compare"
read name1
echo "Enter the Second string to compare"
read name2

if [$name1 == $name2]

then

 echo "First string is equal to Second string"

else

 echo "Strings are not same"

fi

Let's test the following program:

$ chmod +x if_03.sh

$./if_03.sh

The following will be the output after executing the preceding commands:

$./ if_03.sh
Enter the first string to compare
LEVANA
Enter the Second string to compare
TECHNOLOGIES
Strings are not same
$./ if_03.sh

The following will be the output after executing the preceding commands:

Enter the first string to compare
LEVANA
Enter the Second string to compare
LEVANA
First string is equal to Second string
$

Automating Decision Making in Scripts

[150]

We will write the script for performing various other string operations using a test.
Let's write the script if_04.sh to compare two strings for various attributes:

#!/bin/bash

str1="Ganesh"
str2="Naik"

if [$str1 = $str2]
then
 echo "Two Strings Are Equal"
fi

if [$str1 != $str2]
then
 echo "Two Strings are not equal"
fi

if [$str1]
then
 echo "String One Has Size Greater Than Zero"
fi

if [$str2]
then
 echo "String Two Has Size Greater Than Zero"
fi

Let's test the following program:

$ chmod +x if_04.sh

$./if_04.sh

The following will be the output after executing the preceding commands:

Two Strings are not equal

String One Has Size Greater Than Zero

String Two Has Size Greater Than Zero

If we want to verify whether the entered password is valid then script i_05.sh will
be as follows:

#!/bin/bash
stty –echo # password will not be printed on screen
read -p "Please enter a password :" password
if test "$password" == "Abrakadabra"

Chapter 8

[151]

then
echo "Password is matching"
fi
stty echo

Let's test the following program:

$ chmod +x if_05.sh

$./if_05.sh

The following will be the output after executing the preceding commands:

$./ if_05.sh

Please enter a password : levana

$./ if_05.sh

Please enter a password : Abrakadabra

Password is matching

$

Checking for null values
Many a time we need to check the value of variable, such as is it null? The null value
means zero value. If we want to create the string with the null value, then we should
use double quotes "" while declaring it:

if ["$string" = ""]
then
echo "The string is null"
fi

We can even use [! "$string"] or [-z "$string"] for null checking of strings.

Let's write the script if_08.sh, which will search if the entered person name is the
user of the computer system:

#!/bin/bash
read -p "Enter a user name : " user_name

try to locate username in in /etc/passwd
#
grep "^$user_name" /etc/passwd > /dev/null

status=$?

if test $status -eq 0

Automating Decision Making in Scripts

[152]

then
 echo "User '$user_name' is found in /etc/passwd."
else
 echo "User '$user_name' is not found in /etc/passwd."
fi

Let's test the following program:

$ chmod +x if_08.sh

$./if_08.sh

The following will be the output after executing the preceding commands:

Enter a user name : ganesh

User 'ganesh' is not found in /etc/passwd.

In the preceding script, we are searching the username in the /etc/passwd file. If a
person's name is not found in the /etc/passwd file, then we can conclude that the
username is not created in the system.

Let's write a script to check the disk space being used. The script will print a warning
if 90 percent or more of the disk space is used on one of the mounted partitions.

The Shell script if_09.sh for solving the disk filesystem usage warning will be
as follows:

#!/bin/bash
df -h | grep /dev/sda1 | cut -c 35-36 > log.txt
read usage < log.txt
if [$usage -gt 80]
then
 echo "Warning – Disk file system has exceeded 80% !"
 echo "Please move extra data to backup device.
else
 echo "Good - You have enough disk space to continue working !"
fi

Let's test the following program:

$ chmod +x if_09.sh

$./if_0.sh

Chapter 8

[153]

Due to some hardware differences, if the preceding program does not work, then
make the following changes in the script:

1. Check if your partition of storage is sda1, sda2, or any other by entering the
$df –h command.

2. Check if the % disk utilization value is at character count 35 and 36, if
different then make changes in the code accordingly.

Using the df command, we get the disk filesystem usage information. The grep
command is filtering the hard disk partition, which contains our data. Then, we filter
the disc % utilization number and store that value in the log.txt file. Using the read
command, we read the % utilization and store it in the variable usage. Later on using
the if command, we check and warn the user if the % utilization is greater than 80.

File handling with the if command
You have already learned about how to use the test command for checking various
file operations such as checking the file's permissions and similar other attributes.
A command's task in any script is to check if the file or folder is present or not.
Then accordingly, we need to proceed. We will see how to use the if command
along with the test command.

Use the simple script if_10.sh to check if the file exists or not in the current
directory as follows:

#!/bin/bash
read filename
if test -e $filename
then
 echo "file exists"
else
 echo " file does not exist"
fi

Let's test the program as follows:

$ chmod +x if_10.sh

$./if_10.sh

Automating Decision Making in Scripts

[154]

The following will be the output after executing the preceding commands:

sample.txt

file does not exist

$ touch sample.txt

$./ if_10.sh

sample.txt

file exists

First, we checked without the file. Then, we created a file with the touch command.
We can very easily check the presence of the file.

Let's learn how to use the if command to check various file attributes, such as
whether it exists, does it have file permissions to read, write, executable, and similar
by writing script if_11.sh as follows:

#!/bin/bash
echo "$1 is: "
if ! [-e $1]
then
 echo "..Do not exists"
 exit
else
 echo "file is present"
fi

if [-x $1]
then
 echo "..Executable"
fi

if [-r $1]
then
 echo "..Readable"
fi

if [-w $1]
then
 echo "..Writable"
fi

Let's test the following program:

$ chmod +x if_11.sh

$./if_11.sh

Chapter 8

[155]

Output:

sample.txt is:

"file is present"

..Readable

..Writable

The Shell script if_12.sh for performing the file copy operation, and then checking
if the copy operation was successful or not, will be as follows:

#!/bin/bash
file1="File1"
file2="File2"
if cp $file1 $file2
then
 echo "Copy Command Executed Successfully"
 echo "Content of file named Fil1 copied in another file named File2"
else
 echo "Some problem in command execution"
fi

Let's test the program:

$ chmod +x if_12.sh

$./if_12.sh

The following will be the output after executing the preceding commands:

$ touch File1

$./ if_12.sh

Copy Command Executed Successfully

Content of file named Fil1 copied in another file named File2

Multiple test commands and if constructs
These type of constructs enable us to execute the second command depending on the
success or failure of the first command:

command1 && command2
command1 || command2

Automating Decision Making in Scripts

[156]

Let's write script if_13.sh. In this script, we will ask the user to input two numbers.
Then, the if statement will evaluate two expressions. If both are true, then the
command after then will be executed, otherwise commands after else will be called:

#!/bin/bash
echo "Enter the first number"
read val_a
echo "Enter the Second number"
read val_b

if [$val_a == 1] && [$val_b == 10]
then
 echo "testing is successful"
else
 echo "testing is not successful"
fi

Let's test the program:

$ chmod +x if_13.sh

$./if_13.sh

The following will be the output after executing the preceding commands:

Enter the first number

10

Enter the Second number

20

testing is not successful

$./if_13.sh

Enter the first number

1

Enter the Second number

10

testing is successful

Sometimes, we may need to enter a command to check if the file has the execute
permission? If it is executable, then the file should be executed. The script for such
a requirement will be as follows:

test -e file && . file.

Chapter 8

[157]

Let's learn one more example of && and multiple expressions using the test
command. In the next script if_14.sh, we will check if file_one is present,
then we will print Hello and then immediately we will check if file_two is
present, then we will print there on the screen:

#!/bin/bash

touch file_one
touch file_two

if [-f "file_one"] && echo "Hello" && [-f file_two] && echo
"there"
then
 echo "in if"
else
 echo "in else"
fi
exit 0

Let's test the program:

$ chmod +x if_14.sh.sh

$./if_14.sh

The following will be the output after executing the preceding commands:

Hello

there

in if

The following script if_15.sh will check file permissions such as read, write, and
execute in the same if command using multiple && with the test command:

#!/bin/bash
echo "Please enter file name for checking file permissions"
read file
if [[-r $file && -w $file && -x $file]]
then
 echo "The file has read, write, and execute permission"
fi

Let's test the program:

$ chmod +x if_15.sh

$ touch sample.txt

$ chmod +rwx sample.txt

$./if_15.sh

Automating Decision Making in Scripts

[158]

The following will be the output after executing the preceding commands:

The file has read, write, and execute permissions.

Till now, we have seen multiple expressions using the && logical operator. Now we
will see one example with the OR (||) logical operator. In the following script if_16.
sh, we will check the existence of file_one and then we will print Hello on the
screen. If the first expression of file checking fails, then the second expression of echo
will be executed:

#!/bin/sh
if [-f file_one] || echo "Hello"
then
 echo "In if"
else
 echo "In else"
fi

Let's test the program:

$ chmod +x if_16.sh

$./if_16.sh

The following will be the output after executing the preceding commands:

hello

In if

$ touch file_one

$./if_16.sh

Output:

In if

We checked in the preceding script if file_one is absent or present.

The if/elif/else command
Whenever we need to take decision from multiple situations or options such as
whether it a city is the capital of a country, the state capital, a major city, or a small
town. In such situations where, depending on various options, we need to execute
different commands, if/else or if/elif/else decision-making commands
are useful.

Chapter 8

[159]

Using the if/elif/else commands, we can have multiple decision-making
processes. If the if command succeeds, the command after then will be executed.
If it fails, the command after the elif statement will be tested. If that statement
succeeds, then statements under the elif are executed. However, suppose none of
the elif conditions are true, then statements after the else command are executed.
Here, the else block is executed by default. The fi statement will close the if/
elif/else command.

The syntax of decision making using the if elif construct is as follows:

If expression_1
then
 Command

elif
 expression_2
then
 Command

elif
 expression_3
then
 Command

else
 Command

fi

Let's write script if_18.sh as follows. In this script, we are checking if the directory
with a given name exists or not. If this fails, then we are checking whether the file
with the given name exists. Even if this fails, then we will inform the user that
neither the file nor the directory exists with the given name:

#!/bin/bash
echo "Kindly enter name of directory : "
read file

if [[-d $file]]
then
 echo "$file is a directory"
elif [[-f $file]]
 then
 echo "$file is a file."
 else
 echo "$file is neither a file nor a directory. "
fi

Automating Decision Making in Scripts

[160]

Let's test the program:

$ chmod +x if_18.sh

$./is_18.sh

The following will be the output after executing the preceding commands:

$./ if_18.sh

Kindly enter name of directory :

File1

File1 is a file.

$ mkdir dir1

$./ if_18.sh

Kindly enter name of directory :

dir1

dir1 is a directory

$./ if_18.sh

Kindly enter name of directory :

File007

File007 is neither a file nor a directory.

The null command
In many situations, we may need a command that does nothing and returns a success
status such as 0. In such cases, we can use the null command. It is represented by
a colon (:). For example, in the if loop, we do not want to put any command if it is
successful, but we have certain commands to execute if it fails. In such situations,
we can use the null command. This is illustrated in the following if_19.sh script.
If we want to loop forever, then the null command can be used in the for loop:

Chapter 8

[161]

#!/bin/bash
city=London
if grep "$city" city_database_file >& /dev/null
then
 :
else
 echo "City is not found in city_database_file "
 exit 1
fi

Let's test the program:

$ chmod +x if_19.sh

$./if_19.sh

The following will be the output after executing the preceding commands:

City is not found in city_database_file

We can observe from the preceding script that the colon is a null command and it
does nothing.

Switching case
Apart from simple branches with if, it is also possible to process multiple
decision-making operations using the case command. In a case statement,
the expression contained in a variable is compared with a number of expressions,
and for each expression matched, a command is executed.

It is possible to have multiple branching using the if/elif/else commands. But if
more than two or three elif commands are used, then code becomes very complex.
When all the different conditions are depending on a single variable, in such cases,
the esac statement is used. The interpreter checks the value of the case variable
against value1, value2, value3, and so on, till the match is found. If the value is
matched then all the statements after that case value are executed till the double
semicolon is reached. If nothing is matched then statements after esac are executed.
Wildcard characters and pipe (vertical bar for ORing two values) are allowed in the
case statement.

Automating Decision Making in Scripts

[162]

A case statement has the following structure:

case variable in
 value1)
 command(s)
 ;;
 value2)
 command(s)
 ;;
 *)
 command(s)
 ;;
esac

For illustrating the switch case scripting example, we will write the case_01.sh
script as follows. We will ask the user to enter any number from the range 1–9. We
will check the entered number with the case command. If a user enters any other
number, then we will display the error by displaying the Invalid key message:

#!/bin/bash

echo "Please enter any number from 1 to 9"
read number

case $number in
 1) echo "ONE"
 ;;
 2) echo "TWO"
 ;;
 3) echo "Three"
 ;;

Chapter 8

[163]

 4) echo "FOUR"
 ;;
 5) echo "FIVE"
 ;;
 6) echo "SIX"
 ;;
 7) echo "SEVEN"
 ;;
 8) echo "EIGHT"
 ;;
 9) echo "NINE"
 ;;
 *) echo "SOME ANOTHER NUMBER"
 ;;
esac

Let's test the program:

$ chmod +x case_01.sh

$./case_01.sh

The following will be the output after executing the preceding commands:

Please enter any number from 1 to 9

5

FIVE

Sometimes, in the Shell script we may need to ask for an e-mail address from the
user. In such situations, we need to verify if the address is correct or not. We can
use the case command to validate the correct e-mail address as follows:

#!/bin/bash
case $1 in

@.com) echo "valid email address"

 ;;

*) echo "invalid string"

 ;;

esac

Let's test the program:

$ chmod +x case_02..sh

$./ case_02.sh abc@gmail.com

Automating Decision Making in Scripts

[164]

The following will be the output after executing the preceding commands, if the
e-mail address is correct:

valid email address

$./ case_02.sh abc.com

The following will be the output after executing the preceding commands, if the
e-mail address is not correct:

invalid string

If inside the script, we need to provide file operations such as copy, move, or delete,
then we can use the case command for such scripts. The script case_03.sh for file
operations is as follows:

#!/bin/bash
echo "Press 1 for copy or 2 for move or 3 for removing the file"
read num
case $num in
1) echo "We are going to do copy operation"
echo " Enter Source file name"
read source
echo " Enter destination file name"
read destination
cp $source $destination
;;
2) echo "We are going to do move operation"
echo " Enter Source file name"
read source
echo "Enter destination file name"
read destination
mv $source $destination ;;
3) echo "We are going to remove the file"
echo " Enter the name of file to remove"
read source
rm $source ;;
*) echo "invalid key"
esac

Let's test the program:

$ chmod +x case_03.sh

$./case_03.sh

Chapter 8

[165]

The following will be the output after executing the preceding commands:

Press 1 for copy or 2 for move or 3 for removing the file

1

We are going to do copy operation

 Enter Source file name

File1

 Enter destination file name

File4

In this Shell script case_04.sh, we will ask the user to enter the day of the week.
Inside the script, we will detect the text entered and print a detailed description
of the day such as First Day is Monday and similar on the screen. Note that we
are able to perform pattern matching for the upper case and lower case in the case
statement:

#!/bin/bash
echo "Enter Day Of The Week"
read day

case $day in
 [mM][oO][nN][dD][aA][yY])
 echo "First Day is Monday"
 ;;
 [tT][uU][eE][sS][dD][aA][yY])
 echo "Second Day Tuesday"
 ;;
 [wW][eE][dD][nN][eE][sS][dD][aA][yY])
 echo "Third Day Wednesday"
 ;;
 [tT][hH][uU][rR][sS][dD][aA][yY])
 echo " Fourth Day Thursday"
 ;;
 [fF][rR][iI][dD][aA][yY])
 echo "Fifth Day Friday"
 ;;
 [sS][aA][tT][uU][rR][dD][aA][yY])
 echo "Sixth Day Saturday"
 ;;
 [sS][uU][nN][dD][aA][yY])
 echo "Seventh Day Sunday"
 ;;
 *)
 echo "Invalid Day of Week"
 ;;
 esac

Automating Decision Making in Scripts

[166]

Let's test the program:

$ chmod +x case_04.sh

$./case_04.sh

The following will be the output after executing the preceding commands:

$./ case_04.sh

Enter Day Of The Week

Monday

First Day is Monday

$./ case_04.sh

Enter Day Of The Week

Thursday

Fourth Day Thursday

We write the script case_05.sh for printing days in the current month. We will use
the date command in the script for finding the current month:

#!/bin/bash
mth=$(date +%m)

case $mth in
02)
 echo "February usually has 28 days."
 echo "If it is a leap year, it has 29 days."
 ;;

04|06|09|11)
 echo "The current month has 30 days."
 ;;

*)
 echo "The current month has 31 days."
 ;;
 esac

Let's test the program:

$ chmod +x case_05.sh

$./case_05.sh

Chapter 8

[167]

The following will be the output after executing the preceding commands:

The current month has 30 days.

Implementing simple menus with select
With the Bash shell, it is possible to create simple menus with the help of the select
built-in command.

The syntax of select is as follows:

 PS3=prompting-text
 select VARIABLE in item1 item2 item3
 do
 commands
 done

The advantage of a menu with select is that we can have an endless loop with it.
We can have a condition in which we exit the loop.

In the following script select_01.sh, we show the menu with five options such as
a, bc, def, ghi, and jkl. The script will execute the command inside do and done:

#!/bin/bash
select var1 in a bc def ghi jkl
do
echo "Present value of var1 is $var1
done

Let's test the program:

$ chmod +x select_01.sh

$./select_01.sh

The following will be the output after executing the preceding commands:

1) a

2) bc

3) def

4) ghi

5) jkl

#? 2

"Present value of var1 is bc

#? 4

Automating Decision Making in Scripts

[168]

"Present value of var1 is ghi

#? 5

"Present value of var1 is jkl

#?

Press ^C to quit

We can implement the case command inside the do and done part of the select
menu. The syntax will be as follows:

 PS3=prompting text
 select VARIABLE in item1 item2 item3
 do
 case VARIABLE in
 value1) command1 ; ;
 value2) command2 ; ;
 esac
 done

In the following script select_02.sh, we used the case command inside do and
done. This gives us many convenient features. Due to select, we get endless such as
continuous loop. In case the if option entered is quit, then it exits the continuous
loop:

#!/bin/bash
PS3="please select any one : "
select var in a b quit
do
case $var in
 a) echo option is a ;;
 b) echo option is b ;;
 quit) exit ;;
 *) echo option is default ;;
esac
done

Let's test the program:

$ chmod +x select_02.sh

$./select_02.sh

The following will be the output after executing the preceding commands:

1) a

2) b

3) quit

Chapter 8

[169]

please select any one : 1

option is a

please select any one : 2

option is b

please select any one : 3

In the following script select_03.sh, we used a case with numerical options 1, 2, 3,
4, and an option for an invalid choice:

#!/bin/bash
PS3="Please enter one of the option"
select var in 1 2 3 4
do
case $var in
 1) echo "One is selected";;
 2) echo "Two is selected;;
 3) echo "Two is selected;;
 4) echo "Two is selected;;
 *) echo "not a proper option";;
esac
done

Let's test the program:

$ chmod +x select_03.sh

$./select_03.sh

The following will be the output after executing the preceding commands:

1) 1

2) 2

3) 3

4) 4

Please enter one of the option : 1

"One is selected"

Please enter one of the option : 2

"Two is selected

Please enter one of the option : 3

"Two is selected

Please enter one of the option : 4

"Two is selected

Automating Decision Making in Scripts

[170]

Please enter one of the option : 8

"not a proper option"

Please enter one of the option :

In the case statement, we can put many choices to select the same command.
Here is an example of the script select_04.sh as follows:

#!/bin/bash
PS3="Please select one of the above:"
select COMPONENT in comp1 comp2 comp3 all none
do
case $COMPONENT in
comp1|comp2|comp3) echo "comp1 or comp2 or comp3 selected" ;;
all) echo "selected all"
;;
none) break ;;
*) echo "ERROR: Invalid selection, $REPLY." ;;
esac
done

Let's test the program:

$ chmod +x select_04.sh

$./select_04.sh

The following will be the output after executing the preceding commands:

1) comp1

2) comp2

3) comp3

4) all

5) none

Please select one of the above:

The script select_05.sh is used to inform the user about the calorie information in
fruits as follows:

#!/bin/bash
PS3="Enter the number for your fruit choice: "

select fruit in apple orange banana peach pear "Quit Menu"
do
 case $fruit in
 apple)

Chapter 8

[171]

 echo "An apple has 80 calories."
 ;;

 orange)
 echo "An orange has 65 calories."
 ;;

 banana)
 echo "A banana has 100 calories."
 ;;

 peach)
 echo "A peach has 38 calories."
 ;;

 pear)
 echo "A pear has 100 calories."
 ;;

 "Quit Menu")
 break
 ;;

 *)
 echo "You did not enter a correct choice."
 ;;
 esac
done

Let's test the program:

$ chmod +x select_05.sh

$./select_05.sh

The following will be the output after executing the preceding commands:

1) apple 3) banana 5) pear

2) orange 4) peach 6) Quit Menu

Enter the number for your fruit choice: 1

An apple has 80 calories.

Enter the number for your fruit choice: 2

An orange has 65 calories.

Enter the number for your fruit choice: 3

A banana has 100 calories.

Automating Decision Making in Scripts

[172]

Enter the number for your fruit choice: 4

A peach has 38 calories.

Enter the number for your fruit choice: 5

A pear has 100 calories.

Enter the number for your fruit choice: 6

Looping with the for command
For iterative operations, the bash shell uses three types of loops: for, while, and
until. Using the for looping command, we can execute a set of commands for a
finite number of times for every item in a list. In the for loop command, the
user-defined variable is specified. After the in command, the keyword list of values
can be specified. The user-defined variable will get the value from that list and all
statements between do and done get executed until it reaches the end of the list.

The purpose of the for loop is to process a list of elements. It has the following syntax:

for variable in element1 element2 element3
do
commands
done

The simple script with the for loop could be as follows:

for command in clear date cal
do
 sleep 1
 $command
Done

In the preceding script, the commands clear, date, and cal will be called one after
another. The sleep command will be called before every command for a second.

If we need to loop continuously or infinitely, then the following is the syntax:

for ((;;))
do
 command
done

Chapter 8

[173]

Let's write a simple script for_01.sh. In this script, we will print the var variable
10 times:

#!/bin/bash
for var in {1..10}

do

 echo $var

done

Let's test the program:

$ chmod +x sor_01.sh

$./for_01.sh

The following will be the output after executing the preceding commands:

1

2

3

4

5

6

7

8

9

10

The following script for_02.sh uses the C programming style syntax:

#!/bin/bash
max=10
for ((i=1; i<=max; i++))
do
echo -n "$i " # one case with echo without –n option
done

Let's test the program:

$ chmod +x for_02.sh

$./for_02.sh

Automating Decision Making in Scripts

[174]

The following will be the output after executing the preceding commands:

$./for_02.sh # OUTPUT with –n option

1 2 3 4 5 6 7 8 9 10

$./for_02.sh # OUTPUT without –n option

1

2

3

4

5

6

7

8

9

10

In the next script for_03.sh, we will be processing a list of numbers, which are
listed next to the in keyword:

#!/bin/bash
for var in 11 12 13 14 15 16 17 18 19 20
do
 echo $var
done

Let's test the program:

$ chmod +x for_03.sh

$./for_03.sh

The following will be the output after executing the preceding commands:

$./for_03.sh

11

12

13

14

15

16

17

Chapter 8

[175]

18

19

20

In the following script for_04.sh, we create users11 to user20 along with their
home directory:

#!/bin/bash
for var in user{11..20}
do
 useradd –m $var
 passwd -d $var
done

Let's test the program:

$ chmod +x for_04.sh.sh

$ sudo ./for_04.sh

The following will be the output after executing the preceding commands:

user11 to user20 will be created with their home folders in the /home/ folder.
You need to be a root user or administrator to run this script.

In the for_05.sh script, we will be passing command-line parameters. All the
command-line parameters will be available as the $* inside script:

#!/bin/sh
for var in $*
do
 echo "command line contains: $var"
done

Let's test the program:

$ chmod +x for_05.sh

$./for_05.sh 1 2 3 4 5 6

The following will be the output after executing the preceding commands:

command line contains: 1

command line contains: 2

command line contains: 3

command line contains: 4

command line contains: 5

command line contains: 6

Automating Decision Making in Scripts

[176]

In the next script for_06.sh, we are passing a list of words such as name of fruits.
Inside the script, we are printing the information of variable:

#!/bin/bash
create fruits.txt => Apple Mango Grapes Pears Banana Orange
Pineapple
for var in `cat fruits.txt`
do
 echo "var contains: $var"
done

Let's test the program:

$ chmod +x for_06.sh

$./for_06.sh

The following will be the output after executing the preceding commands:

var contains: Apple

var contains: Mango

var contains: Grapes

var contains: Pears

var contains: Banana

var contains: Orange

var contains: Pineapple

Using the for_07.sh script, we generate a list of files with the ls shell command.
This will be the list of filenames. In the for loop, the following list of files will
be printed:

#!/bin/bash
echo -n "Commands in bin directory are : $var"
for var in $(ls /bin/*)
do
 echo -n -e "$var \t"
done

Let's test the program:

$ chmod +x for_07.sh
$./for_07

Chapter 8

[177]

The following will be the output after executing the preceding commands:

This will print the content of /bin/ directory.

For taking a backup of files, we can write the for_08.sh script as follows:

#!/bin/bash
for filename in *.c
do
 echo "Copying $filename to $filename.bak"
 cp $filename $filename.bak
done

Let's test the program:

$ chmod +x for_08.sh

$ touch 1.c 2.c

$./for_08.sh

The following will be the output after executing the preceding commands:

"Copying 1.c to 1.c.bak"

"Copying 2.c to 2.c.bak"

Exiting from the current loop iteration
with the continue command
With the help of the continue command, it is possible to exit from the current
iteration of the loop and to resume the next iteration of the loop. We use the for,
while, or until commands for loop iterations.

The following is the for_09.sh script for the loop with the continue command to
skip a certain part of the loop commands:

#!/bin/bash
for x in 1 2 3
do
 echo before $x
 continue 1
 echo after $x
done
exit 0

Automating Decision Making in Scripts

[178]

Let's test the program:

$ chmod +x for_09.sh

$./for_09.sh

The following will be the output after executing the preceding commands:

before 1

before 2

before 3

The following is the for_10.sh script, in which we will check all files and directories.
If the file is found, we will print the name. If the directory is found, we will skip further
processing with the continue command. Take care that any of your useful files with
the name sample* are not in the testing directory before testing this script:

#!/bin/bash
rm -rf sample*
echo > sample_1
echo > sample_2
mkdir sample_3
echo > sample_4

for file in sample*
do
 if [-d "$file"]
 then
 echo "skipping directory $file"
 continue
 fi
 echo file is $file
done
rm -rf sample*
exit 0

Let's test the program:

$ chmod +x for_10.sh

$./for_10.sh

The following will be the output after executing the preceding commands:

file is sample_1

file is sample_2

skipping directory sample_3

file is sample_4

Chapter 8

[179]

In the following script for_11.sh, we are checking the backup of files in the /MP3/
folder. If the file is not found in the folder, we are copying it into the folder for backup
purposes. We can implement incremental backup scripts using this functionality:

#!/bin/bash
for FILE in 'ls *.mp3'
do
 if test -e /MP3/$FILE
 then
 echo "The file $FILE exists."
 continue
 fi
 cp $FILE /MP3
done

Let's test the program:

$ chmod +x for_11.sh

$./for_11.sh

If the file exists in the MP3 folder, then the loop will continue to check the next file.
If the file backup is not present in the MP3 folder, then the file will be copied to it.

Exiting from a loop with a break
In the previous section, we discussed about how continue can be used to exit from
the current iteration of a loop. The break command is another way to introduce a
new condition within a loop. Unlike continue, however, it causes the loop to be
terminated altogether if the condition is met.

In the for_12.sh script, we check the directory's content. If the directory is found, then
we are exiting the loop and displaying the message that the first directory is found:

#!/bin/bash
rm -rf sample*
echo > sample_1
echo > sample_2
mkdir sample_3
echo > sample_4

for file in sample*
do
 if [-d "$file"]; then

Automating Decision Making in Scripts

[180]

 break;
 fi
done

echo The first directory is $file
rm -rf sample*
exit 0

Let's test the program:

$ chmod +x for_12.sh

$./for_12.sh

The following will be the output after executing the preceding commands:

The first directory is sample_3

In the for_13.sh script, we ask the user to enter any number. We print the square
of numbers in the while loop. If a user enters the number 0, then we use the break
command to exit the loop:

#!/bin/bash
typeset -i num=0
while true
do
 echo -n "Enter any number (0 to exit): "
 read num junk

 if ((num == 0))
 then
 break
 else
 echo "Square of $num is $((num * num))."
 fi
done

echo "script has ended"

Let's test the program:

$ chmod +x for_13.sh

$./for_13.sh

Chapter 8

[181]

The following will be the output after executing the preceding commands:

Enter any number (0 to exit): 1

Square of 1 is 1.

Enter any number (0 to exit): 5

Square of 5 is 25.

Enter any number (0 to exit): 0

Working with the do while loop
Similar to the for command, while is also the command for loop operations. The
command next to while is evaluated. If it is successful or 0 then the commands
inside do and done are executed.

The purpose of a loop is to test a certain condition or expression and execute a given
command while the condition is true (while loop) or until the condition becomes
true (until loop):

while condition
do
 commands
done

until condition
do
 commands
done

The following is the while_01.sh script, in which we read a file and display its
it's content:

#!/bin/bash
file=/etc/resolv.conf
while IFS= read -r line # IFS : inter field separator
do
 # echo line is stored in $line
 echo $line
done < "$file"

Let's test the program:

$ chmod +x while_01.sh

$./while_01.sh

Automating Decision Making in Scripts

[182]

The following will be the output after executing the preceding commands:

nameserver 192.168.168.2

search localdomain

In the following script while_02.sh, we are printing number 1–10 on the screen
using the while loop:

#!/bin/bash
declare -i x
x=0
while [$x -le 10]
do
 echo $x
 x=$((x+1))
done

Let's test the program:

$ chmod +x while_02.sh

$./while_02.sh

The following will be the output after executing the preceding commands:

0

1

2

3

4

5

6

7

8

9

10

In the following script while_03.sh, we ask the user to input the test. If the input
of the text is quit, then we terminate the loop; otherwise, we print the text on
the screen:

#!/bin/bash
INPUT=""
while ["$INPUT" != quit]
do
 echo ""

Chapter 8

[183]

 echo 'Enter a word (quit to exit) : '
 read INPUT
 echo "You typed : $INPUT"
done

Let's test the program:

$ chmod +x while_03.sh

$./while_03.sh

The following will be the output after executing the preceding commands:

Enter a word (quit to exit) :

GANESH

You typed : GANESH

Enter a word (quit to exit) :

Naik

You typed : Naik

Enter a word (quit to exit) :

quit

You typed : quit

In the following while_04.sh script, we print the content of variable num on screen.
We are starting with value 1. In the loop, we increment the value of the num variable
by 1. When the value of the variable num reaches 6, then the while loop is terminated:

#!/bin/bash
num=1
while ((num < 6))
do
 echo "The value of num is: $num"
 ((num = num + 1)) # let num=num+1
done
echo "Done."

Let's test the program:

$ chmod +x while_04.sh

$./while_04.sh

Automating Decision Making in Scripts

[184]

The following will be the output after executing the preceding commands:

The value of num is: 1

The value of num is: 2

The value of num is: 3

The value of num is: 4

The value of num is: 5

Done.

The while_05.sh script prints a series of odd numbers on the screen. We are passing
a total number of odd numbers required as command-line parameter:

#!/bin/bash
count=1
num=1
while [$count -le $1]
do
 echo $num
 num=`expr $num + 2`
 count=`expr $count + 1`
done

Let's test the program:

$ chmod +x while_05.sh

$./while_05.sh 5

The following will be the output after executing the preceding commands:

1

3

5

7

9

Using until
The until command is similar to the while command. The given statements in
the loop are executed as long as they evaluate the condition as true. As soon as
the condition becomes false, then the loop is exited.

Chapter 8

[185]

The syntax is as follows:

until command
do
 command(s)
done

In the following script until_01.sh, we are printing numbers 0-9 on screen.
When the value of variable x becomes 10, then the until loop stops executing:

#!/bin/bash
x=0
until [$x -eq 10]
do
 echo $x
 x=`expr $x + 1`
done

Let's test the program:

$ chmod +x until_01.sh

$./until_01.sh

The following will be the output after executing the preceding commands:

0

1

2

3

4

5

6

7

8

9

In the following script until_02.sh, we ask the user to input text. We are printing
entered text on the screen. When the user enters the text quit, the until loop ends
the iterations:

#!/bin/bash
INPUT=""
until ["$INPUT" = quit]
do
 echo ""

Automating Decision Making in Scripts

[186]

 echo 'Enter a word (quit to exit) : '
 read INPUT
 echo "You typed : $INPUT"
done

Let's test the program:

$ chmod +x until_02.sh

$./until_02.sh

The following will be the output after executing the preceding commands:

Enter a word (quit to exit) :

Ganesh

You typed : Ganesh

Enter a word (quit to exit) :

Naik

You typed : Naik

Enter a word (quit to exit) :

quit

You typed : quit

In the following script until_03.sh, we are passing the username as a
command-line parameter to the script. When required, the user logs in the grep
command and will find it from the output of the who command. Then, the until
loop will stop iterations and inform on screen about the user login:

#!/bin/bash
until who | grep "$1" > /dev/null
do
 sleep 60
done
echo -e \\a
echo "***** $1 has just logged in *****"
exit 0

Let's test the program:

$ chmod +x until_03.sh

$./until_03.sh User10

Chapter 8

[187]

The following will be the output after executing the preceding commands:

"***** User10 has just logged in *****"

This message will be displayed when user10 has logged into the server.

Piping the output of a loop to a Linux
command
If we need to redirect the output of a loop to any other Linux command such as sort,
we can even redirect the loop output to be stored in the file:

The following is an example of source code for_14.sh:

#!/bin/bash
for value in 10 5 27 33 14 25
do
 echo $value
done | sort -n

Let's test the program:

$ chmod +x for_14.sh

$./for_14.sh

The following will be the output after executing the preceding commands:

5

10

14

25

27

33

In the preceding script, the for loop iterates through a list of numbers which is
unsorted. The numbers are printed in the body of the loop, which are enclosed
between do and done commands. Once the loop is complete, the output is piped
to the sort command, which in turn is performing a numerical sort and printing
the result on the screen.

Automating Decision Making in Scripts

[188]

Running loops in the background
In certain situations, the script with loops may take lot of time to complete. In such
situations, we may decide to run the script containing loops in the background so
that we can continue other activities in the same terminals. The advantage of this
will be that the terminal will be free for giving the next commands.

The following for_15.sh script is the technique to run a script with loops in
the background:

#!/bin/bash
for animal in Tiger Lion Cat Dog
do
 echo $animal
 sleep 1
done &

Let's test the program:

$ chmod +x for_15.sh

$./for_15.sh

The following will be the output after executing the preceding commands:

Tiger

Lion

Cat

Dog

In the preceding script, the for loop will process animals Tiger, Lion, Cat, and
Dog sequentially. The variable animal will be assigned the animal names one after
another. In the for loop, the commands to be executed are enclosed between do
and done. The ampersand after the done keyword will make the for loop run in the
background. The script will run in the background till the for loop is complete.

The IFS and loops
The shell has one environment variable, which is called the Internal Field Separator
(IFS). This variable indicates how the words are separated on the command line. The
IFS variable is, normally or by default, a white space (' '). The IFS variable is used as
a word separator (token) for the for command. In many documents, IFS can be any
one of the white space, ':', '|', ': ' or any other desired character. This will be useful
while using commands such as read, set, for, and so on. If we are going to change
the default IFS, then it is a good practice to store the original IFS in a variable.

Chapter 8

[189]

Later on, when we have done our required tasks, then we can assign the original
character back to IFS.

In the following script for_16.sh, we are using ":" as the IFS character:

#/bin/bash
cities=Delhi:Chennai:Bangaluru:Kolkata
old_ifs="$IFS" # Saving original value of IFS
IFS=":"
for place in $cities
do
 echo The name of city is $place
done

Let's test the program:

$ chmod +x for_16.sh

$./for_16.sh

The following will be the output after executing the preceding commands:

The name of city is Delhi

The name of city is Chennai

The name of city is Bangaluru

The name of city is Kolkata

By default the original inter field separator is a whitespace. We have saved the
original IFS in the old_ifs variable. We assigned colon ':' and an IFS in the script.
Therefore, we can use ':' as an inter field separator in our test file or text string.

Summary
In this chapter, you learned about using decision making in scripts by working with
Test, if-else, and switching case. We also used select for a loop with menu. For
repeating tasks, such as processing lists, you learned about using the for loop, while
loop and do while. You also learned how to control loops using the break statement
and continue statement.

In the next chapter, you will learn about writing new functions and calling them,
sharing data between functions, passing parameters to functions, and creating a
library of functions.

[191]

Working with Functions
In the last chapter, you learned about using decision making in scripts by working
with test, if-else, and switch case. We also used select for loop with menu.
For repeated tasks, such as processing lists, you learned to use the for and while
loops and the do while. You also learned about how to control loops using the break
and continue statements.

In this chapter, you will learn the following topics:

• Writing a new function and calling
• Sharing data between functions
• Passing parameters to functions
• Creating a library of functions

Understanding functions
We, human beings, in our day-to day lives, take help from people, who are specialized
in certain knowledge or skills, such as doctors, lawyers, and barbers. This helps our
lives to be more organized and comfortable so that we need not learn every skill in this
world. We take advantage of skills that have already been acquired by other people.
The same thing applies to software development as well. If we use whatever code or
scripts that have already been developed, then this will save our time and energy.

In real-world scripts, we break down big tasks or scripts into smaller logical tasks.
This modularization of scripts helps in the better development and understanding
of code. The smaller logical blocks of script are be called functions.

Working with Functions

[192]

The advantages of functions are as follows:

• If the script is very big, then understanding it becomes very difficult. Using
functions, we can easily understand complex script through logical blocks
or functions.

• When a big and complex script is divided into functions, then it becomes
easy to develop and test the script.

• If a certain part of code is repeated again and again in the big script, then
using functions to replace repetitive code is very practical, such as checking
whether the file or directory is present or not.

• We define functions for specific tasks or activities. Such functions can be
called as commands in scripts.

Functions can be defined on a command line or inside scripts. The syntax for defining
functions on a command line is as follows:

functionName { command_1; command_2; . . . }

Or:

functionName() { command_1; command_2; . . }

In single-line functions, every command should end with a semicolon.

Let's write a very simple function to illustrate the preceding syntax:

$ hello() {echo 'Hello world!';}

We can use the previously defined function as follows:

$ hello

Output:

Hello world!

The syntax of the function declaration inside the Shell script is as follows:

function_name() {
 block of code
}

An alternate function syntax is mentioned here:

function function_name
{
 block of code
}

Chapter 9

[193]

Functions should be defined at the beginning of a script.

We can add this function in the Shell script function_01.sh as follows:

#!/bin/bash
hello()
{echo "Executing function hello"
}
echo "Script has started now"
hello
echo "Script will end"

Test the script as follows:

$ chmod +x function_01.sh

$./function_01.sh

Output:

Script has started now

Executing function hello

Script will end

We can modify the preceding script into function_02.sh with some more
functionality, shown as follows:

#!/bin/bash
function greet()
{ echo "Hello $LOGNAME, today is $(date)"; }
greet

Test the script as follows:

$ chmod +x function_02.sh

$./function_02.sh

Output:

Hello ganesh, today is Sun Jul 5 22:47:23 PDT 2015

The system init functions are placed in the /lib/lsb/init-functions folder in
the Linux operating system:

Working with Functions

[194]

The script function_03.sh with a function for listing the present working directory
and listing all the files in the current directory is as follows:

#!/bin/bash
function_lister ()
{
 echo Your present working directory is `pwd`
 echo Your files are:
 ls
}
function_lister

Test the script as follows:

$ chmod +x function_03.sh

$./function_03.sh

Output:

Your present working directory is /home/student/Desktop/test

Your files are:

01.sh 02.sh 03.sh

The script function_04.sh with a function to pause the script until users press any
key is as follows:

#!/bin/bash
pause: causes a script to take a break
pause()
{
echo "To continue, hit RETURN."
read q
}
pause

Test the script as follows:

$ chmod +x function_04.sh

$./function_04.sh

Output:

To continue, hit RETURN.

(after hitting any key it resumes)

Chapter 9

[195]

The script function_05.sh with a function to print the previous day is as follows:

#!/bin/bash
yesterday()
{
date --date='1 day ago'
}
yesterday

Test the script as follows:

$ chmod +x function_05.sh

$./function_05.sh

Output:

Sat Jul 4 22:52:24 PDT 2015

The function to convert lowercase letters into uppercase letters is shown in
function_06.sh as follows:

#!/bin/bash
function Convert_Upper()
{
echo $1 | tr 'abcdefghijklmnopqrstuvwxyz' \
 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
}
Convert_Upper "ganesh naik - embedded android and linux training"

Test the script as follows:

$ chmod +x function_06.sh

$./function_06.sh

Output:

GANESH NAIK - EMBEDDED ANDROID AND LINUX TRAINING

Displaying functions
If you want to see all the declared functions in the shell environment, then enter the
following command:

$ declare -f

If you want to see a particular function, then here is the command:

$ declare -f hello

Working with Functions

[196]

Output:

hello ()

{

 echo 'Hello world!'

}

Removing functions
If we no longer need the function in shell, then we use following command:

$ unset -f hello

$ declare -f# Check the function in shell environment.

Output:

Nothing will be displayed on the screen, as the function hello is removed from the
shell environment with the unset command.

Passing arguments or parameters to
functions
In certain situations, we may need to pass arguments or parameters to functions.
In such situations, we can pass arguments as follows.

Calling the script with command-line parameters is as follows:

$ name arg1 arg2 arg3 . . .

Let's type a function as follows:

$ hello() { echo "Hello $1, let us be a friend."; }

Call the function in the command line as follows:

$ hello Ganesh

Output:

Hello Ganesh, let us be a friend

Chapter 9

[197]

Let's write the script function_07.sh. In this script, we pass command-line
parameters to the script as well as the function:

#!/bin/bash
quit()
{
 exit
}
ex()
{
 echo $1 $2 $3
}
ex Hello hi bye# Function ex with three arguments
ex World# Function ex with one argument
echo $1# First argument passed to script
echo $2# Second argument passed to script
echo $3# Third argument passed to script
quit
echo foo

Test the script as follows:

$ chmod +x function_07.sh

$./function_07.sh One Two Three

Output:

Hello hi bye

World

One

Two

Three

We can observe from the output that the parameters passed to the function are local
to the function. In global scope, the command-line parameters to script are available
as $1, $2, $3, and more.

Another example script called function_08.sh to pass multiple arguments to the
function is as follows:

#!/bin/bash
countries()
{
let us store first argument $1 in variable temp
temp=$1

Working with Functions

[198]

 echo "countries(): \$0 = $0" # print command
echo "countries(): \$1 = $1" # print first argument
echo "countries(): total number of args passed = $#"
echo "countries(): all arguments (\$*) passed = -\"$*\""
}

Call function with one argument
echo "Calling countries() for first time"
countriesUSA

Call function with three arguments
echo "Calling countries() second time "
countriesUSA India Japan

Test the script as follows:

$ chmod +x function_08.sh
$./function_08.sh

Output:

Calling countries() for first time

countries(): $0 = ./hello.sh

countries(): $1 = USA

countries(): total number of args passed = 1

countries(): all arguments ($*) passed = -"USA"

Calling countries() second time

countries(): $0 = ./hello.sh

countries(): $1 = USA

countries(): total number of args passed = 3

countries(): all arguments ($*) passed = -"USA India Japan"

We can create a function that could create a new directory and change to it during
the execution of the program. The script function_09.sh is as follows:

#!/bin/bash
mcd: mkdir + cd; creates a new directory and
changes into that new directory
mcd ()
{
mkdir $1
cd $1
}
mcd test1

Chapter 9

[199]

The preceding script will create the test1 folder in the current folder and change the
path to the test1 folder.

A common task in many scripts is to ask users to input an answer as either Yes or No.
In such situations, the following script function_10.sh would be very useful:

#!/bin/bash
yesno ()
{
while true .
do
echo "$*"
echo "Please answer by entering yes or no : "
read reply
case $reply in
yes)
echo "You answered Yes"
return 0
;;
no)
echo "You answered No"
return 1
;;
*)
echo "Invalid input"
;;
esac
done
}
Yesno

Test the script as follows:

$ chmod +x function_10.sh

$./function_10.sh

Output:

Please answer by entering yes or no:

yes

"You answered Yes"

$./function_10.sh

Please answer by entering yes or no:

no

"You answered No"

Working with Functions

[200]

Sharing the data by many functions
We can create variables that may contain strings or numerical values. These global
variables can be accessed by all the functions inside a script.

A simple script called function_11.sh with functions is as follows:

#!/bin/bash
We will define variable temp for sharing data with function
temp="/temp/filename"

remove_file()
{
 echo "removing file $temp..."
}
remove_file

Test the script as follows:

$ chmod +x function_11.sh

$./function_11.sh

Output:

removing file /temp/filename...

Declaring local variables in functions
Whenever we declare a variable in a script, it is accessible to all functions. The variable
is global by default. If the variable is modified by any line of script or any function,
it will be modified in global scope. This may create problems in certain situations.
We will see this problem in the following script function_12.sh:

#!/bin/bash
name="John"
hello()
{name="Maya"
 echo $name
}
echo $name# name contains John
hello# name contains Maya
echo $name# name contains Maya

Chapter 9

[201]

Test the script as follows:

$ chmod +x function_12.sh

$./function_12.sh

Output:

John

Maya

Maya

To make a variable local, we declare it as follows:

local var=value

local varName

Let's write the script function_13.sh as follows:

#!/bin/bash
name="John"
hello()
{local name="Mary"
echo $name
}
echo $name# name contains John
hello# name contains Mary
echo $name# name contains John

Test the script as follows:

$ chmod +x function_13.sh

$./function_13.sh

Output:

John

Mary

John

The command local can only be used within a function. The keyword local limits
the scope of the variable to the function. In the previous script, we initially declared
the variable name; it has global scope. This variable name has the content John. Then,
we have declared the local variable name in the function hello. This local variable
name is initialized to Mary. Then, outside of the function hello, we again access the
global variable name, which has the content John.

Working with Functions

[202]

Returning information from functions
You have learned to pass command-line parameters to functions. Similarly, the
function can return integers as a return value. Normally, functions return either
TRUE or FALSE. In certain cases, the function can return integer values, such as
5 or 10, as well.

The syntax is:

return N

When the function calls the command return, the function exits with the value
specified by N.

If the function does not call the command return, then the exit status returned is
that of the last command executed in the function. If what we need is the status
of the last command executed in the function, then we need not return any value
from the function. This is illustrated in the following script function_14.sh:

#!/bin/bash
is_user_root() { [$(id -u) -eq 0]; }
is_user_root && echo "You are root user, you can go ahead."\
|| echo "You need to be administrator to run this script"

Test the script as follows:

$ chmod +x function_14.sh

$./function_14.sh

If you are a root user, then the output will be as follows:

You are root user, you can go ahead.

If you are a normal user, then the output will be as follows:

You need to be administrator to run this script

A modified version of the previous script is function_15.sh:

#!/bin/bash
declare -r TRUE=0
declare -r FALSE=1

is_user_root()
{
[$(id -u)-eq 0]&&return$TRUE||return$FALSE
}

Chapter 9

[203]

is_user_root && echo "You can continue" || echo "You need to be root
to run this script."

Test the script as follows:

$ chmod +x function_15.sh

$./function_15.sh

Output:

You need to run this script as a root user.

Let's see the script in which the function returns a value:

#!/bin/bash
yes_or_no()
{
echo "Is your name $*?"
while true
do
echo -n "Please reply yes or no :"
readreply
case$reply in
Y | y | yes) return 0;;
N | n | no) return 1;;
*) echo "Invalid answer"
esac
done
}

if yes_or_no $1
then
echo "Hello $1"
else
echo "name not provided"
fi

Test the script as follows:

$ chmod +x function_16.sh

$./function_16.sh Ganesh

Output:

Is your name Ganesh?

Please reply yes or no :yes

Hello Ganesh

Working with Functions

[204]

Returning a word or string from a function
In Shell scripts, functions cannot return a word or string from a function. If we need
to pass data to script, then we will have to store it in a global variable. We can even
use echo or print to send data to pipe or redirect it to the log file.

Running functions in the background
We have already seen in previous chapters that to run any command in the
background, we have to terminate the command using &:

$ command &

Similarly, we can make the function run in the background by appending & after the
function call. This will make the function run in the background so that the terminal
will be free:

#!/bin/bash
dobackup()
{
 echo "Started backup"
 tar -zcvf /dev/st0 /home >/dev/null 2>&1
 echo "Completed backup"
}
dobackup &
echo -n "Task...done."
echo

Test the script as follows:

$ chmod +x function_17.sh

$./function_17.sh

Output:

Task...done.

Started backup

Completed backup

Chapter 9

[205]

Command source and period (.)
Normally, whenever we enter a command, the new process gets created. If we want
to make functions from the script to be made available in the current shell, then we
need a technique that will run the script in the current shell instead of creating a
new shell environment. The solution to this problem is using either the source or
"."commands.

The commands source and "." can be used to run the Shell script in the current shell
instead of creating a new process. This helps with declaring functions and variables
in the current shell.

The syntax is as follows:

$ source filename [arguments]

Or:

$. filename [arguments]

$ source functions.sh

Or:

$. functions.sh

If we pass command-line arguments, these will be handled inside a script as $1, $2,
and more:

$ source functions.sh arg1 arg2

Or:

$./path/to/functions.sh arg1 arg2

The source command does not create a new shell; but runs the Shell scripts in the
current shell, so that all the variables and functions will be available in the current
shell for usage.

Creating a library of functions
If we want to create our own library of functions, then we can create a script
and add all the functions into this script. We can make all the functions from
our script functions.sh available in the current shell by calling source or the
period . command.

Working with Functions

[206]

The procedure to load all functions into the current shell is as follows:

$ countryUSA

Since the function country is not a part of the shell environment, this command will
give an error:

$. functions.sh

Or:

$ source functions.sh

$ country USA India Japan

This will execute the function country along with the parameter USAIndia Japan.

We can even load a script containing library functions inside another script as
follows:

#!/bin/bash
. /../my-library.sh
call_library_functions();

We have called the library function script my-library.sh inside another script.
This will define all the functions within the script my-library.sh available in the
current script environment.

Summary
In this chapter, we understood the functions in Shell scripts. You learned about
defining and displaying functions and removing the functions the from shell.
You also learned about passing arguments to functions, sharing data between
functions, declaring local variables in functions, returning results from functions,
and running functions in background. You finally learned about using the source
and .commands. We used these commands to use the library of functions.

In the next chapter, you will learn about using traps and signals. You will also
learn about creating menus with the help of the utility dialog.

[207]

Using Advanced Functionality
in Scripts

In the last chapter, you learned about using functions in Shell scripts and defining,
displaying, and removing functions from the shell. You also learned about passing
arguments to functions, sharing data between functions, declaring local variables in
functions, returning results from functions, and running functions in the background.
In the end, you learned about using source and . commands. You used these
commands for using a library of functions.

In this chapter, you will learn the following topics:

• Understanding signals and traps
• Graphical menu development using the dialog utility

Understanding signals and traps
Two types of interrupts exist in the Linux operating system: the hardware interrupt
and the software interrupt. Software interrupts are called signals or traps. Software
interrupts are used for interprocess synchronizations.

Signals are used to notify about a certain event occurrence or to initiate a certain
activity.

We use software signals many times, for example, if any command is not responding
after it is typed, then you might have entered Ctrl + C. This sends a SIGINT signal
to the process, and the process is terminated. In certain situations, we may want the
program to perform a certain activity instead of terminating it using the Ctrl + C
command. In such cases, we can use the trap command to ignore a signal or to
associate our desired function with that signal.

Using Advanced Functionality in Scripts

[208]

In operating systems, software interrupts or signals are generated when the process
attempts to divide a number by zero or due to power failure, system hang up, illegal
instruction execution, or invalid memory access.

The action performed by a few signals is to terminate the process. We can configure
the shell to do the following responses:

• Catch the signal and execute user defined programs
• Ignore the signal
• Suspend the process (similar to Ctrl + Z)
• Continue the process, which was suspended earlier

Enter either of following commands to get the full list of all signals:

$ kill -l

$ trap –l

Output:

If we want to know which keys are used for particular signals, then we enter the
following command:

$ stty -a

The following is a list of a few of the standard signals that a process can use:

Number Name Description Action
0 EXIT The shell exits. Termination
1 SIGHUP The terminal has been

disconnected.
Termination

2 SIGINT The user presses Ctrl + C Termination
3 SIGQUIT The user presses Ctrl + \ Termination

Chapter 10

[209]

Number Name Description Action
4 SIGILL This gives an illegal hardware

instruction.
Program error

5 SIGTRAP This is produced by debugger. Program error
8 SIGFPE This gives an arithmetic error, such

as division by zero.
Program error

9 SIGKILL This cannot be caught or ignored. Termination

We can send either of the kill signals to a process with PID # 1234 as follows:

kill -9 1234

kill -KILL 1234

kill -SIGKILL 1234

As we can see, we can use a signal number or a signal name along with the process
ID. By default, the kill command sends signal number 15 to process. Using the kill
command, we can send the desired signal to any specific process.

We can stop a process using the Ctrl + Z signal as follows:

$ kill -19 pid

Ctrl + Z or SIGTSTP will stop the process.

We can run the stopped process by sending the SIGCONT signal.

$ kill -18 pid

The signal number of SIGCONT is 18.

Using the trap command
If a signal or software interrupt is generated while the script is running, then we can
define what action is performed by that interrupt handler using the trap command.
The trap command helps us in reassigning the system response to a particular signal
through the user defined function or commands.

The syntax to use the trap command is either of the following:

$ trap 'command; command' signal-name

$ trap 'command; command' signal-number

Using Advanced Functionality in Scripts

[210]

The usage as per the preceding syntax is as follows:

trap 'echo "You pressed Control key"; exit 1' 0 1 2 15

This will print the message You pressed Control Key, any SIGINT, SIGHUP, or
SIGTERM received by the process:

trap 'rm file.tmp; exit 1' EXIT INT TERM HUP

When any of the SIGINT, SIGTERM, or SIGHUP signals arrives, then it will delete the
file.tmp file and exit with status 1.

While using the trap command, if the command string is surrounded by double
quotes, then the command substitution and variable substitution will be done during
the trap command execution. If the command string is enclosed in single quotes
then the command substitution and variable substitution will be done when the
signal is detected.

Ignoring signals
If we want the shell to ignore certain signals, then we can call the trap command
followed by a pair of empty quotes as a command. Those signals will be ignored by
the shell process shown by either of the following commands:

$ trap " " 2 3 20

$ trap "" INT QUIT TSTP

The signals 2 (SIGINT), 3 (SIGQUIT), and 20 (SIGTSTP) will be ignored by the
shell process.

Resetting signals
If we want to reset the signal behavior to the original default action, then we need
to call the trap command followed by the signal name or number as shown in the
following examples, respectively:

$ trap TSTP

$ trap 20

This will reset the default action of signal 20 (SIGTSTP). The default action is to
suspend the process (Ctrl + Z).

Chapter 10

[211]

Listing traps
Let's reassign our function to signals by the trap command:

$ trap 'echo "You pressed Control key"; exit 1' 0 1 2 15

If we do not pass any arguments after the trap command, then it lists all reassigned
signals along with their functions.

We can list all the assigned signal lists by the following command:

$ trap

Output:

trap -- 'echo "You pressed Control key"; exit 1' EXIT

trap -- 'echo "You pressed Control key"; exit 1' SIGHUP

trap -- 'echo "You pressed Control key"; exit 1' SIGINT

trap -- 'echo "You pressed Control key"; exit 1' SIGTERM

Using traps in function
If we use the trap command inside a function in script, then the reassigned signal
behavior will become global inside a script. We can check this effect in the following
script example.

Let's write Shell script trap_01.sh as follows:

#!/bin/bash
trap "echo caught signal SIGINT" SIGINT
trap "echo caught signal SIGQUIT" 3
trap "echo caught signal SIGTERM" 15
while :
do
 sleep 50
done

Let's test the program as follows:

$ chmod +x trap_01.sh

$./ trap_01.sh

Output:

^Ccaught signal SIGINT

^\Quit (core dumped)

caught signal SIGQUIT

Using Advanced Functionality in Scripts

[212]

Let's write one more Shell script trap_02.sh as follows:

#!/bin/bash

trap "echo caught signal SIGINT" SIGINT
trap "echo caught signal SIGQUIT" 3
trap "echo caught signal SIGTERM" 15
trap "echo caught signal SIGTSTP" TSTP

echo "Enter any string (type 'dough' to exit)."
while true
do
 echo "Rolling...\c"
 read string
 if ["$string" = "dough"]
 then
 break
 fi
done
echo "Exiting normally"

Let's test the program as follows:

$ chmod +x trap_02.sh

$./ trap_02.sh

Output:

Enter any string (type 'dough' to exit).

Rolling...\c

^Ccaught signal SIGINT

dough

Exiting normally

Running scripts or processes even if the
user logs out
Sometimes we may need our script to run even after we log out, such as when
taking a back up and similar activities. In this case, even if we log out, the system is
powered on and running. In such situations, we can use the nohup command. The
nohup command prevents the process from terminating using the SIGHUP signal.

Chapter 10

[213]

The nohup command makes our script run without attaching it to a terminal.
Therefore, if we use the echo command to print text on the terminal. It will not be
printed in a terminal, since the script is not attached to a terminal. In such cases, we
need to redirect the output to the file, or nohup will automatically redirect the output
to a nohup.out file.

Therefore, if we need to run a process, even if we log out, we need to use the nohup
command as follows:

$ nohup command &

The example is as follows:

$ nohup sort emp.lst &

This will run a program to sort the emp.lst file in the background.

$ nohup date &

Creating dialog boxes with the dialog utility
The dialog utility is used to create a basic level graphical user interface. We can use
this in Shell script to create very useful programs.

To install the dialog utility in Debian or Ubuntu Linux, enter following command:

$ sudo apt-get update

$ sudo apt-get install l dialog

Similarly, enter the following command to install the utility dialog in CentOS or Red
Hat Linux:

$ sudo yum install dialog

The typical syntax of the dialog command is as follows:

$ dialog --common-options --boxType "Text" Height Width \

 --box-specific-option

The common-options utility is used to set the background color, title, and so on in
dialog boxes.

The option details are as follows:

• Text: The caption or contents of the box
• Height: The height of the dialog box
• Width: The width of the dialog box

http://bash.cyberciti.biz/guide/Debian
http://bash.cyberciti.biz/guide/Ubuntu
http://bash.cyberciti.biz/guide/Linux
http://bash.cyberciti.biz/guide/CentOS
http://bash.cyberciti.biz/guide/Redhat
http://bash.cyberciti.biz/guide/Linux

Using Advanced Functionality in Scripts

[214]

Creating a message box (msgbox)
To create a simple message box, we can use the following command:

$ dialog --msgbox "This is a message." 10 50

Creating a message box (msgbox) with a title
Enter the following command to create a message box with the following title:

$ dialog --title "Hello" --msgbox 'Hello world!' 6 20

The option details are as follows:

• --title "Hello": This will set the title of the message box as "Hello"
• --msgbox 'Hello world!': This will set the content of the message box

as "Hello world!"
• 6: This will set the height of the message box
• 20: This will set the width of message box:

The message box has a Hello title with content Hello World! It has a single
OK button. We can use this message box to inform the user about any events
or information. The user will have to press Enter to close this message box.
If the content is large for a message box, then the dialog utility will provide
the scrolling of the message.

Chapter 10

[215]

The yes/no box (yesno)
If we need to obtain a yes or no answer from the user, we can use the following
options along with the dialog command:

$ dialog --yesno "Would you like to continue?" 10 50

We can have the same yes/no dialog box with a title as follows:

$ dialog --title "yesno box" --yesno "Would you like to continue?" 10 50

Let's write the Shell script dialog_01.sh as follows:

#!/bin/bash
dialog --title "Delete file" \
--backtitle "Learning Dialog Yes-No box" \
--yesno "Do you want to delete file \"~/work/sample.txt\"?" 7 60

Selecting "Yes" button will return 0.
Selecting "No" button will return 1.
Selecting [Esc] will return 255.
result=$?
case $result in
 0) rm ~/work/sample.txt

Using Advanced Functionality in Scripts

[216]

 echo "File deleted.";;
 1) echo "File could not be deleted.";;
 255) echo "Action Cancelled – Presssed [ESC] key.";;
esac

Let's test the following program:

$ chmod +x dialog_01.sh

$./dialog_01.sh

Output:

The input box (inputbox)
Whenever we want to ask a user for an input text via the keyboard, in such
situations, the inputbox option is useful. While entering text via keyboard, we can
use keys such as delete, backspace, and the arrow cursor keys for editing. If the input
text is larger than the input box, the input field will be scrolled. Once the OK button is
pressed, the input text can be redirected to a text file:

dialog --inputbox "Please enter something." 10 50 \

2> /tmp/tempfile

VAR=`cat ~/work/output.txt

Chapter 10

[217]

Let's write the Shell script dialog_02.sh to create an input box as follows:

#!/bin/bash
result="output.txt"
>$ $result # Create empty file

dialog --title "Inputbox Demo" \
--backtitle "Learn Shell Scripting" \
--inputbox "Please enter your name " 8 60 2>$result

response=$?
name=$(<$result)
case $response in
0) echo "Hello $name"
 ;;
1) echo "Cancelled."
 ;;
255) echo "Escape key pressed."
esac
rm $result

Let's test the following program:

$ chmod +x dialog_02.sh

$./dialog_02.sh

Output:

"Hello Ganesh Naik"

Using Advanced Functionality in Scripts

[218]

The textbox (textbox)
If we want to display the contents of the file in a textbox inside the menu created by
dialog, then enter the following command:

$ dialog --textbox /etc/passwd 10 50

We are displaying the /etc/passwd file in the textbox with the previous command.

A password box
Many a time, we need to get the password from the user. In this case, the password
should not be visible on the screen. The password box option is perfectly useful for
this purpose.

If we want to display an entered password as a string of ****, then we will need to
add the--insecure option.

We will need to redirect the inserted password in a file.

Let's write Shell script dialog_03.sh to receive the password as follows:

#!/bin/bash
creating the file to store password
result="output.txt 2>/dev/null"

delete the password stored file, if program is exited pre-maturely.
trap "rm -f output.txt" 2 15

dialog --title "Password" \
--insecure \
--clear \
--passwordbox "Please enter password" 10 30 2> $result

reply=$?

Chapter 10

[219]

case $reply in
 0) echo "You have entered Password : $(cat $result)";;
 1) echo "You have pressed Cancel";;
 255) cat $data && [-s $data] || echo "Escape key is pressed.";;
esac

Let's test the following program:

$ chmod +x dialog_03.sh

$./dialog_03.sh

Output:

Output:

You have entered Password : adcd1234

The menu box (menu)
Usually, any program or Shell script may be required to perform multiple types of
tasks. In such cases, the menu box option is very useful. This option will display the
list of choices for the user. Then, the user may select any of his or her desired choice.
Our script should execute the desired option.

Each menu has two fields, a tag and an item string. In the next example menu demo,
we have tags such as date, calendar, and editor. The description of tags is called as an
item string.

Let's write the Shell script dialog_04.sh to create a menu as follows:

#!/bin/bash
Declare file to store selected menu option
RESPONSE=menu.txt
Declare file to store content to display date and cal output
TEMP_DATA=output.txt

Using Advanced Functionality in Scripts

[220]

vi_editor=vi
trap and delete temp files
trap "rm $TEMP_DATA; rm $RESPONSE; exit" SIGHUP SIGINT SIGTERM

function display_output(){
 dialog --backtitle "Learning Shell Scripting" --title "Output"
--clear --msgbox "$(<$TEMP_DATA)" 10 41
}

function display_date(){
 echo "Today is `date` @ $(hostname -f)." >$TEMP_DATA
 display_output 6 60 "Date and Time"
}

function display_calendar(){
 cal >$TEMP_DATA
 display_output 13 25 "Calendar"
}

We are calling infinite loop here
while true
do

Show main menu
dialog --help-button --clear --backtitle "Learn Shell Scripting" \
--title "[Demo Menubox]" \
--menu "Please use up/down arrow keys, number keys\n\
1,2,3.., or the first character of choice\n\
as hot key to select an option" 15 50 4 \
Calendar "Show the Calendar" \
Date/time "Show date and time" \
Editor "Start vi editor" \
Exit "Terminate the Script" 2>"${RESPONSE}"

menuitem=$(<"${RESPONSE}")

Start activity as per selected choice
case $menuitem in
 Calendar) display_calendar;;
 Date/time) display_date;;
 Editor) $vi_editor;;
 Exit) echo "Thank you !"; break;;
esac
done
Delete temporary files
[-f $TEMP_DATA] && rm $TEMP_DATA
[-f $RESPONSE] && rm $RESPONSE

Chapter 10

[221]

Let's test the following program:

$ chmod +x dialog_04.sh

$./dialog_04.sh

Output:

The checklist box (checklist)
In this case, we can present the user with a choice to select one or multiple options
from a list:'

dialog --checklist "This is a checklist" 10 50 2 \
"a" "This is one option" "off" \
"b" "This is the second option" "on"

The radiolist box (radiolist)
If you want the user to select only one option out of many choices, then radiolist is
a suitable option:

dialog --radiolist "This is a selective list, where only one \
option can be chosen" 10 50 2 \
"a" "This is the first option" "off" \
"b" "This is the second option" "on"

Using Advanced Functionality in Scripts

[222]

Radio buttons are not square but round, as can be seen in the following screenshot:

The progress meter box (gauge)
The progress meter displays a meter at the bottom of the box. This meter indicates
the percentage of the process completed. New percentages are read from standard
input, one integer per line. This meter is updated to reflect each new percentage.

Let's write the Shell script dialog_05.sh to create a progress meter as follows:

#!/bin/bash
declare -i COUNTER=1
{
 while test $COUNTER -le 100
 do
 echo $COUNTER
 COUNTER=COUNTER+1
 sleep 1
 done
 } | dialog --gauge "This is a progress bar" 10 50 0

Let's test the following program:

$ chmod +x dialog_05.sh

$./dialog_05.sh

Output:

Chapter 10

[223]

Customization of dialog with the confi guration file We can customize dialog using
the ~/.dialogrc configuration file. The default file location is $HOME/.dialogrc.

To create the .dialogrc configuration file, enter the following command:

$ dialog --create-rc ~/.dialogrc

We can customize the output of the dialog utility by changing any of the
configuration parameters defined in the .dialogrc file.

Summary
In this chapter, you learned about using traps and signals. You also learned about
creating menus with the help of the dialog utility.

In the next chapter, you will learn about Linux system startup, from power on till the
login-logout of the user and how to customize a Linux system environment.

http://bash.cyberciti.biz/guide/.dialogrc

[225]

System Startup and
Customizing a Linux System

In the last chapter, you learned about using traps and signals. You also learned
about creating menus with the help of dialog utility.

In this chapter, you will learn about Linux system startup, from power on to the
user login and how to customize a Linux system environment.

System startup, inittab, and run levels
When we power on the Linux system, the Shell scripts are run one after another
and the Linux system is initialized. These scripts start various services, daemons,
start databases, mount discs, and many more applications. Even during the shutting
down of the system, certain Shell scripts are executed so that important system
data and information can be saved to the disk and the applications are properly shut
down. These are called boot, startup, and shutdown scripts. These scripts are copied
during installation of the Linux operating system in your computer. As a developer
or administrator, understanding these scripts may help you in understating and
debugging the Linux system. If required, you can customize
these scripts if the need arises.

The kernel startup and init process
In our computers, there is one EPROM chip called BIOS, which is situated on the
motherboard or main board of our computers. When we power on, the processor
starts executing a program from BIOS. The program from BIOS, does a power on
self-test such as checking memory and other peripherals. Then the BIOS program
initializes the basic hardware required for PC operation, such as initializing the
PCI bus, video devices, and similar.

System Startup and Customizing a Linux System

[226]

Finally, BIOS checks the boot device sequence and queries the first boot device. This
BIOS program then reads the master boot record of the first boot device, which is
normally a hard disk, USB device, or DVD. Once BIOS reads the master boot record
of the first boot device, then the boot loader is started. The boot loader reads kernel
binary and copies it in the RAM memory. The boot loader checks if the kernel binary
is clean and not corrupt. If the integrity check is good then it uncompresses the
kernel in the RAM. The bootloader then calls the start_kernel()function, which is
a part of kernel. Once the start_kernel()function is called, the kernel is started.

The kernel then initializes the subsystems of kernel such as process management,
filesystem, device drivers, memory management, network management, and similar
other modules of the kernel. Then, it mounts the root file system, and kernel creates
the first process called init. This init process reads the /etc/inittab file. In inittab,
the run level information is stored. As per this information, the operating system is
initialized process init.

The typical /etc/inittab content will be as follows:

$ cat /etc/inittab

Output:

Default runlevel. The runlevels used are:

0 - halt (Do NOT set initdefault to this)

1 - Single user mode

2 - Multiuser, without NFS (The same as 3, if you do not have
networking)

3 - Full multiuser mode

4 - unused

5 - X11

6 - reboot (Do NOT set initdefault to this)

#

id:5:initdefault:

In the preceding line, the number 5 after ID specifies that the system should be
started in run level 5. It means that the system should be started in X11, such as a
graphical user interface. We will study more about run levels in the next section.

Nowadays, many distributions have modified the boot-up sequence. They have
removed the /etc/inittab file and used different applications to customize the
boot-up process.

Chapter 11

[227]

Understanding run levels
There are seven run levels. The system will be started in run level 1 to 5. Run level 0
is used for shutting down the system. Run level 6 is used for rebooting the system.
The graphical user interface is started in run level 5. The following is the summary of
different run levels:

Sr. No. Run level number Description
1 0 Halting the system
2 1 Single-user mode
3 2 Multi-user mode
4 3 Multi-user with network support
5 4 Not used
6 5 Graphical user interface with multi-user

and networking support
7 6 Rebooting the system

We need to be in the root-user mode to use the init command.

If we give the following command, then the system will shutdown:

init 0

To reboot the system use the following command:

init 6

If the system is running in the command-line mode, and if you want to start your
server in the graphical user mode, then use the following command:

init 5

System initialization boot scripts
In the Linux system, the following folders will be present in the /etc/ folder:

Sr. No. Folder name Description
1 rc0.d/ The scripts called during shutting down
2 rc1.d/ The run level 1 scripts
3 rc2.d/ The run level 2 scripts
4 rc3.d/ The run level 3 scripts
5 rc4.d/ The run level 4 scripts

System Startup and Customizing a Linux System

[228]

Sr. No. Folder name Description
6 rc5.d/ The run level 5 scripts
7 rc6.d/ The run level 6 scripts
8 rcS.d/ The scripts called before every run level
9 rc.local The final script called after run level initialization

Every run level folder will have script names starting either with S or K. When
starting the system, the scripts with names starting with S are called one after
another. When shutting down, all the script names starting with K are called one
after another.

For example, if the system has to be started in run level 5, then initially all the scripts
from the rcS.d folder will be called, then all the scripts from rc5.d will be called.
Finally, the rc.local script will be called.

The content of /etc/rc.local is as follows:

$ cat /etc/rc.local

Output:

#!/bin/sh -e

#

rc.local

#

This script is executed at the end of each multiuser runlevel.

Make sure that the script will "exit 0" on success or any other

value on error.

#

In order to enable or disable this script just change

the execution bits.

#

By default this script does nothing.

exit 0

We can add our customization commands before the exit 0 line in the preceding
rc.local script.

Before any user is logged in, the mentioned scripts will be called. After this, user
login initialization will be started. This is explained in the following sessions.

Chapter 11

[229]

User initialization scripts
Till now, we have seen different scripts, these scripts initialize the operating system,
prior to the login of any user. Once the basic operating system in initialized, the user
login process starts. This process is explained in the following topics.

Systemwide settings scripts
In the /etc/ folder, the following files are related to the user level initialization:

• /etc/profile: Few distributions will have additional folder /etc/
profile.d/. All the scripts from the profile.d folder will be executed.

• /etc/bash.bashrc

The preceding scripts are called by all the users, including root and normal users.
Initially, the /etc/profile script will be called. This script creates system-wide
environment settings. Few distributions will have the /etc/profile.d/ folder. SuSE
Linux has additional /etc/profile.local script. The scripts in this folder will also
be called. Then, the /etc/bash.bachrc script will be executed.

User level settings – default files
Scripts in the /etc/ folder will be called for all the users. Particular user-specific
initialization scripts are located in the HOME folder of each user. These are as follows:

• $HOME/.bash_profile: This contains user-specific bash environment default
settings. This script is called during the login process.

• $HOME/.bash_login: This contains the second user environment
initialization script called during login process.

• $HOME/.profile: If present, this script internally calls the .bashrc script file.
• $HOME/.bashrc: This is an interactive shell or terminal initialization script.

All the preceding script's names start with dot. These are hidden files. We will need
to give the ls -a command to view these files.

• Non - login shells.

Whenever we create a new shell terminal, such as, if we pressed the Ctrl + Alt + T key
combination or we start a terminal from the applications tab then the terminal which
is created is called the interactive shell terminal. We use this terminal to interact with
the operating system. This is not the login shell, which is created during the boot-up
process. But this interactive shell terminal gives us the CLI prompt for entering the
command to execute.

System Startup and Customizing a Linux System

[230]

Whenever we create an interactive bash terminal, Shell scripts from /etc/profile
and similar are not called, only the ~/.bashrc script is called every time we create a
new interactive shell terminal. If we want any environment customization for every
newly created interactive shell terminal, we need to customize the .bashrc script
from the home folder of the user.

If you check the content of $HOME/.bashrc, you will observe the following:

• The .bashrc script is the setting prompt
• It initializes the environmental variables, HISTCONTROL, HISTSIZE,

and HISTFILESIZE
• It customizes the output of the less command
• It creates various alias commands such as grep, fgrep, egrep, ll, la, l,

and similar

If we customize .bashrc such as adding new alias commands or declaring a new
function or environment variables, then we should execute .bashrc to take its
effect. The following are the two ways to run the .bashrc script so that the
environment of the current shell will also be updated as per the customization
done in the .bashrc script:

• $ source .bashrc

• $. bashrc

In these two techniques, the child shell is not created but the new function is.
Environment and similar variables will become a part of the current shell environment.

Every user's home folder has one more script called .bash_logout. This script is
called or executed when the user exits from the login shell.

If the system user is an embedded system developer, who is interested in adding or
modifying the device's driver-related command, then he or she will have to make
changes in the /etc/rc*.d folder scripts, or they may have to modify the /etc/
rc.local script.

If the administrator wants to modify the environment for all the users, then they will
have to modify the /etc/profile and /etc/bash_bashrc scripts.

If we want to customize the environment related to a particular user, then the scripts
located in the user's home folder, such as $HOME/.profile, $HOME/bash_profile,
and $HOME/bash_login scripts, should be modified.

Chapter 11

[231]

If the user wants to customize only the interactive shell terminal environment, then
they will have to customize the $HOME/.bashrc script.

If you are working in system administration, then I would suggest you learn
about the /etc/fstab file and it's editing. This file is used for configuring mount
points and how file systems are mounted.

Summary
In this chapter, you learned about the Linux system start up, from power on till user
login and how to customize a Linux system environment.

In the next chapter, you will learn about using stream editor (sed) and awk for
text processing.

[233]

Pattern Matching
and Regular Expressions

with sed and awk
In the previous chapter, you learned about Linux system's startup, from power-on
till user login, and how to customize a Linux system environment.

In this chapter, we will cover the following topics:

• Understanding regular expressions
• Stream editor (sed) for text processing
• Using awk for text processing

The basics of regular expressions
A sequence of characters that have certain patterns of text (with meta-characters),
which will be searched from in a larger text or file is called regular expressions:

$ ll /proc | grep cpuinfo

In the preceding command, the grep utility will search for the cpuinfo text in all
lines of input text and will print lines that have the cpuinfo text.

Pattern Matching and Regular Expressions with sed and awk

[234]

The utilities such as grep, sed, or awk use regular expressions for filtering text and
then apply various processing commands as required by the user. The lines which
do not match the pattern will be rejected. The following diagram explains the same
concept:

Rejected Data

Data Stream Matching DataRegular
expression

In Chapter 3, Using Test Processing and Filters in Your Scripts, you learned about
the basics of regular expressions and pattern matching using the vi editor and
the grep utility.

sed – noninteractive stream editor
The stream editor (sed) is a very popular noninteractive stream editor. Normally,
whenever we edit files using the vi editor, we need to open the file using the
vi command, then we interact with the file, such as to see the content of the file
on screen, then, edit it, and save the file. Using sed, we can type commands on
the command line and sed will make the changes to the text file. The sed is a
nondestructive editor. The sed makes the changes to the file and displays the
content on screen. If we want to save the changed file, then we need to redirect
the output of the sed to the file.

The procedure to install sed is shown here.

For Ubuntu or any Debian-based distributions enter the following command:

$ apt-get install sed

For Red Hat or any rpm-based distribution enter the following command:

$ yum install sed

To check the version of sed, enter the following command:

$ sed –V

Chapter 12

[235]

Otherwise, enter this command:

$ sed --version

GNU sed version 3.02

Understanding sed
Whenever you use sed commands on a text file, sed reads the first line of the file and
stores it in a temporary buffer called pattern space. The sed processes this pattern
space buffer as per commands given by the user. Then, it prints the output on screen.
This line from the pattern space is then removed and the next line of the file is loaded
in the pattern space. In this way, it processes all the lines one by one. This line-by-
line processing is continued till the last line of the file. As the sed commands are
processed on the temporary buffer or pattern space, the original line is not modified.
Therefore, we say sed is a nondestructive buffer.

Text file sed's pattern space (buffer) sed's output

Happy Birth Day Happy Birth DayHappy Birth Day

Understanding regular expression usage
in sed
While using sed, regular expressions are enclosed in forward slashes. As grep and
sed use regular expressions and metacharacters for searching patterns in the file.
For example:

sed -n '/Regular_Expression/p' filename

sed -n '/Mango/p' filename

This will print lines matching the Mango pattern:

sed -n 's/RE/replacement string/' filename

sed -n 's/Mango/Apple/' filename

This will find the line containing the Mango pattern and then the Mango pattern will
be replaced by the Apple text. This modified line will be shown on screen and the
original file will be unchanged.

Pattern Matching and Regular Expressions with sed and awk

[236]

The following is a summary of various metacharacters and it's usage in sed:

Metacharacter Function
^ This is the beginning-of-line anchor
$ This is the end-of-line anchor
. This matches one character, but not the newline

character
* This matches zero or more characters
[] This matches one character in the set
[^] This matches one character not in the set
\(..\) This saves matched characters
& This saves the search string so it can be

remembered in the replacement string
\< This is the beginning-of-word anchor
\> This is the end-of-word anchor
x\{m\} This is the repetition of the character x:m times
x\{m,\} This means at least m times
x\{m,n\} This means between m and n times

Addressing in sed
We can specify which line or number of lines the pattern search and commands are
to be applied on while using the sed commands. If line numbers are not specified,
then the pattern search and commands will be applied on all lines of the input file.

The line numbers on which commands are to be applied are called address. Address
can be a single line number or range of lines in which the starting number of the line
and the ending number of the range will be separated by commas. Ranges can be
composed of numbers, regular expressions or a combination of both.

The sed commands specify actions such as printing, removing, replacing, and so on.

The syntax is as follows:

sed 'command' filename(s)

Example:

$ cat myfile | sed '1,3d'

Otherwise it can be:

sed '1,3d' myfile

Chapter 12

[237]

This will delete lines 1 to 3:

sed -n '/[Aa]pple/p' item.list

If the Apple or apple pattern is found in the item.list file, then those lines will be
printed on screen and the original file myfile will be unchanged.

To negate the command, the exclamation character (!) can be used.

Example:

sed '/Apple/d' item.list

This tells sed to delete all the lines containing the Apple pattern.

Consider the following example:

sed '/Apple/!d' item.list

This will delete all the lines except the line containing the Apple pattern.

How to modify a file with sed
The sed is a nondestructive editor. This means the output of sed is displayed on
screen; but the original file is unchanged. If we want to modify the file, then we can
redirect the output of the sed command to the file. Deleting lines is illustrated in the
following examples:

$ sed '1,3d' datafile > tempfile

$ mv tempfile newfile

In this example, we have deleted lines 1 to 3 and stored the output in tempfile.
Then, we have to rename tempfile to newfile.

Printing – the p command
By default, the action of the sed command is to print the pattern space, such as every
line which is copied in buffer, and then print the result of processing on it. Therefore,
the sed output will consist of all lines along with the processed line by sed. If we do
not want the default pattern space line to be printed, then we need to give the –n
option. Therefore, we should use the –n option and the p command together to see
the result of the sed processed output.

Here is an example:

$ cat country.txt

Pattern Matching and Regular Expressions with sed and awk

[238]

The output is as follows:

Country Capital ISD Code

USA Washington 1

China Beijing 86

Japan Tokyo 81

India Delhi 91

$ sed '/USA/p'country.txt

The output is as follows:

Country Capital ISD Code

USA Washington 1

USA Washington 1

China Beijing 86

Japan Tokyo 81

India Delhi 91

All the lines from the file are printed by default and the lines with the USA pattern are
also printed:

$ sed –n '/USA/p' country.txt

The output is as follows:

USA Washington 1

As we have given the –n option, sed has suppressed default printing of all lines from
the country file; but has printed the line that contains the text pattern USA.

Deleting – the d command
The d command is used to delete lines. After sed copies a line from a file and puts
it into a pattern buffer, it processes commands on that line, and finally, displays the
contents of the pattern buffer on screen. When the d command is issued, the line
currently in the pattern buffer is removed, not displayed which is shown as follows:

$ cat country.txt

Country Capital ISD Code

USA Washington 1

China Beijing 86

Japan Tokyo 81

India Delhi 91

$ sed '3d' country.txt

Chapter 12

[239]

The output is as follows:

Country Capital ISD Code

USA Washington 1

Japan Tokyo 81

India Delhi 91

Here is the explanation.

The output will contain all the lines except the third line. The third line is deleted by
the following command:

$ sed '3,$d' country.txt

The output is as follows:

Country Capital ISD Code

USA Washington 1

This will delete third line to the last line. The dollar sign in the address indicates the
last line. The comma is called range operator.

$ sed '$d' country.txt

The output is as follows:

Country Capital ISD Code

USA Washington 1

China Beijing 86

Japan Tokyo 81

Here is the explanation.

This deletes the last line. All lines except lines will be displayed.

Here is an example: $ sed '/Japan/d' country.txt

The output is as follows:

Country Capital ISD Code

USA Washington 1

China Beijing 86

India Delhi 91

Pattern Matching and Regular Expressions with sed and awk

[240]

The line containing the Japan pattern is deleted. All other lines are printed:

$ sed '/Japan/!d' country.txt

The output is as follows:

Japan Tokyo 81

This has deleted all the lines that do not contain Japan.

Let's see a few more examples with the delete command.

This will delete line 4 and the next five lines:
$ sed '4,+5d'

This will keep lines 1 to 5 and delete all the other lines:
$ sed '1,5!d'

This will delete lines 1, 4, 7, and so on:
$ sed '1~3d'

Starting from 1, every third line step increments. The number that follows the tilde is
what is called the step increment. The step increment indicates the following:

$ sed '2~2d'

This will delete every other line starting with line 2 to be deleted.

Substitution – the s command
If we want to substitute the text by new text, then we can use commands. After the
forward slash, the regular expression is enclosed and then the text to be substituted
is placed. If the g option is used, then substitution will happen globally, meaning
that it will be applied in the full document. Otherwise, only the first instance will be
substituted:

$ cat shopping.txt

The output is as follows:

Product Quantity Unit_Price Total_Cost

Apple 2 3 6

Orange 2 .8 1.6

Papaya 2 1.5 3

Chicken 3 5 15

Cashew 1 10 10

$ sed 's/Cashew/Almonds/g' shopping.txt

Chapter 12

[241]

The output is as follows:

Product Quantity Unit_Price Total_Cost

Apple 2 3 6

Orange 2 .8 1.6

Papaya 2 1.5 3

Chicken 3 5 15

Almonds 1 10 10

The s command has replaced Cashew by Almonds. The g flag at the end indicates
that the substitution is to be applied globally. Otherwise, it will be applied to the first
pattern match only.

The following substitution command will replace two digit numbers at the end of the
line with .5 appended to them:

$ sed 's/[0–9][0–9]$/&.5/' shopping.txt

The output is as follows:

Product Quantity Unit_Price Total_Cost

Apple 2 3 6

Orange 2 .8 1.6

Papaya 2 1.5 3

Chicken 3 5 15.5

Cashew 1 10 10.5

The ampersand in the search pattern represents the exact pattern found. This will be
replaced by the exact pattern with .5 appended to it.

Range of selected lines: the comma
To use the sed effectively, we should be clear about how to define range. Range is
typically two addresses in a file as follows:

• Range with numbers:
'6d': range of line 6
'3,6d': range from line 3 to 6

• Range with pattern:
'/pattern1/,/pattern2/

Pattern Matching and Regular Expressions with sed and awk

[242]

This will specify the range of all the lines between the pattern1 and
pattern2 patterns. We can even specify th range with a combination
of both, that is, '/pattern/,6'. This will specify the range of lines
between the pattern and line 6.

As mentioned, we can specify the range as numbers, pattern, or a combination
of both.

For example:

$ cat country.txt

Country Capital ISD Code

USA Washington 1

China Beijing 86

Japan Tokyo 81

India Delhi 91

$ sed -n '/USA/,/Japan/p' country.txt

The output is as follows:

USA Washington 1

China Beijing 86

Japan Tokyo 81

In this example, all the lines between addresses starting from USA and until the
pattern Japan will be printed on screen.

For example:

$ sed -n '2,/India/p' country.txt

The output is as follows:

USA Washington 1

China Beijing 86

Japan Tokyo 81

India Delhi 91

In this example, line 2 to the pattern India, are printed on screen.

For example:

$ sed '/Apple/,/Papaya/s/$/** Out of Stock **/' shopping.txt

Chapter 12

[243]

The output is as follows:

Product Quantity Unit_Price Total_Cost

Apple 2 3 6** Out of Stock **

Orange 2 .8 1.6** Out of Stock **

Papaya 2 1.5 3** Out of Stock **

Chicken 3 5 15

Cashew 1 10 10

In this example. for all the lines between the Apple and Papaya patterns, the end of
line will be replaced by the ** Out of Stock ** string.

Multiple edits – the e command
If we need to perform multiple editing by the same command, then we can use
the –e command. Each edit command should be separated by the –e command.
The sed will apply each editing command separated by –e on the pattern space
before loading the next line in the pattern space:

$ cat shopping.txt

The output is as follows:

Product Quantity Unit_Price Total_Cost

Apple 2 3 6

Orange 2 .8 1.6

Papaya 2 1.5 3

Chicken 3 5 15

Cashew 1 10 10

For example:

sed -e '5d' -e 's/Cashew/Almonds/' shopping.txt

The output is as follows:

Product Quantity Unit_Price Total_Cost

Apple 2 3 6

Orange 2 .8 1.6

Papaya 2 1.5 3

Almonds 1 10 10

Pattern Matching and Regular Expressions with sed and awk

[244]

Initially, the command for deleting the fifth line is called, then, the next substitution
command to replace Cashew by Almonds is processed.

Reading from files – the r command
If we need to insert text from another file into the file, which is processed by sed,
then we can use the r command. We can insert text from another file to the specified
location:

For example:

$ cat new.txt

The output will be:

 Apples are out of stock

$ sed '/Apple/r new.txt' shopping.txt

The output is as follows:

Product Quantity Unit_Price Total_Cost

Apple 2 3 6

 Apples are out of stock

Orange 2 .8 1.6

Papaya 2 1.5 3

Chicken 3 5 15

Cashew 1 10 10

The explanation is that, this command has added the content of the new.txt file after
the line containing the Apple pattern.

Writing to files – the w command
The sed command for write is w. Using this command, we can write lines from one
file to another file.

For example:

$ cat new.txt

Chapter 12

[245]

The output is as follows:

new is a empty file

$ sed -n '/Chicken/w new.txt' shopping.txt

$ cat new.txt

Chicken 3 5 15

After the w command, we specify the file to which we will perform the write
operation. In this example, the line containing the Chicken pattern is written
to the new.txt file.

Appending – the a command
The a command is used for appending. When the append command is used, it
appends the text after the line in the pattern space, in which the pattern is matched.
The backslash should be placed immediately after the a command. On the next line,
the text to be appended is to be placed.

For example:

$ cat shopping.txt

The output is as follows:

Product Quantity Unit_Price Total_Cost

Apple 2 3 6

Orange 2 .8 1.6

Papaya 2 1.5 3

Chicken 3 5 15

Cashew 1 10 10

$ sed '/Orange/a\

**** Buy one get one free offer on this item ! ****' shopping.txt

The output is as follows:

Product Quantity Unit_Price Total_Cost

Apple 2 3 6

Orange 2 .8 1.6

**** Buy one get one free offer on this item ! ****

Pattern Matching and Regular Expressions with sed and awk

[246]

Papaya 2 1.5 3

Chicken 3 5 15

Cashew 1 10 10

The new text **** Buy one get one free offer on this item ! **** is
appended after the line containing the Orange pattern.

Inserting – the i command
The i command is used for inserting text above the current pattern space line.
When we use the append command, new text is inserted after the current line
which is in the pattern buffer. In this similar-to-append command, the backslash
is inserted after the i command.

For example:

$ cat shopping.txt

Product Quantity Unit_Price Total_Cost

Apple 2 3 6

Orange 2 .8 1.6

Papaya 2 1.5 3

Chicken 3 5 15

Cashew 1 10 10

$ sed '/Apple/i\

 New Prices will apply from Next month ! ' shopping.txt

The output is as follows:

Product Quantity Unit_Price Total_Cost

 New Prices will apply from Next month !

Apple 2 3 6

Orange 2 .8 1.6

Papaya 2 1.5 3

Chicken 3 5 15

Cashew 1 10 10

In this example, the new text New Prices will be applied from next month! is
inserted before the line containing the Apple pattern. Please check the i command
and the backslash following it.

Chapter 12

[247]

Changing – the c command
The c command is the change command. It allows the sed to modify or change
existing text with new text. The old text is overwritten with the new:

$ cat shopping.txt

The output is as follows:

Product Quantity Unit_Price Total_Cost

Apple 2 3 6

Orange 2 .8 1.6

Papaya 2 1.5 3

Chicken 3 5 15

Cashew 1 10 10

For example:

$ sed '/Papaya/c\

 Papaya is out of stock today !' shopping.txt

The output is as follows:

Product Quantity Unit_Price Total_Cost

Apple 2 3 6

Orange 2 .8 1.6

 Papaya is out of stock today !

Chicken 3 5 15

Cashew 1 10 10

In this example, the line containing the expression Papaya is changed by the new line
Papaya is out of stock today!.

Transform – the y command
The command transform is similar to the Linux tr command. The characters are
translated as per character sequence given. For example, y/ABC/abc/ will convert
lowercase abc into uppercase ABC.

For example:

$ cat shopping.txt

Pattern Matching and Regular Expressions with sed and awk

[248]

The output will be:

Product Quantity Unit_Price Total_Cost

Apple 2 3 6

Orange 2 .8 1.6

Papaya 2 1.5 3

Chicken 3 5 15

Cashew 1 10 10

$ sed '2,4y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNOPQRS
TUVWXYZ/' shopping.txt

The output will be:

Product Quantity Unit_Price Total_Cost

APPLE 2 3 6

ORANGE 2 .8 1.6

PAPAYA 2 1.5 3

Chicken 3 5 15

Cashew 1 10 10

In this example, on lines 2, 3 and 4, all the lowercase letters are converted to
uppercase letters.

Quit – the q command
The q command is used for quitting the sed processing without proceeding to the
next lines:

$ cat shopping.txt

The output will be:

Product Quantity Unit_Price Total_Cost

Apple 2 3 6

Orange 2 .8 1.6

Papaya 2 1.5 3

Chicken 3 5 15

Cashew 1 10 10

For example:

$ sed '3q' shopping.txt

Chapter 12

[249]

The output will be:

Product Quantity Unit_Price Total_Cost

Apple 2 3 6

Orange 2 .8 1.6

In this example, after printing the first to third lines, sed quits further processing.

Holding and getting – the h and g commands
We have already seen that the sed has pattern buffer. The sed has one more type
of buffer called holding buffer. By the h command, we can inform sed to store the
pattern buffer in the holding buffer. And whenever we need the line that is stored
in the pattern buffer, we can get it by the g command, that is, get the buffer.

For example:

$ sed -e '/Product/h' -e '$g' shopping.txt

The output is as follows:

Product Quantity Unit_Price Total_Cost

Apple 2 3 6

Orange 2 .8 1.6

Papaya 2 1.5 3

Chicken 3 5 15

Cashew 1 10 10

Product Quantity Unit_Price Total_Cost

In this example, the line containing the Product pattern is stored in the holding
buffer by the h command. Then, the next editing command indicates to the sed to
get the line from the holding buffer when the last line of the file is reached and
appends the line from the holding buffer after the last line of the file.

Holding and exchanging – the h and
x commands
The x is an exchange command. By using this command, we can exchange the
holding buffer with the current line in the pattern buffer.

For example:

$ sed -e '/Apple/h' -e '/Cashew/x' shopping.txt

Pattern Matching and Regular Expressions with sed and awk

[250]

The output is as follows:

Product Quantity Unit_Price Total_Cost

Apple 2 3 6

Orange 2 .8 1.6

Papaya 2 1.5 3

Chicken 3 5 15

Apple 2 3 6

In this example, the line with the Apple pattern is stored in the holding buffer. When
the pattern with Cashew is found, that line will be exchanged by the holding buffer.

sed scripting
The sed script file contains a list of sed commands in a file. To inform the sed
about our script file, we should use the –f option before the script file name. If the
sed commands are not separated by a new line, then every command should be
separated by a colon ":". We have to take care that there should not be any training
white space after every command in the sed script file; otherwise, the sed will give an
error. sed takes each line in the pattern buffer and then, it will process all commands
on that line. After this line is processed, the next line will be loaded in the pattern
buffer. For the continuation of any sed command, which cannot be fitted in one line,
we need to add one backslash at the end of the line to inform about continuation.

For example:

$ cat shopping1.txt

The output is as follows:

Product Quantity Unit_Price

Apple 200 3

Orange 200 .8

Papaya 100 1.5

Chicken 65 5

Cashew 50 10

April, third week

$ cat stock

Chapter 12

[251]

The output is as follows:

This is my first sed script by :

1i\

Stock status report

/Orange/a\

Fresh Oranges are not available in this season. \

Fresh Oranges will be available from next month

/Chicken/c\

**\

We will not be stocking this item for next few weeks.\

**

$d

Enter the next command as follows:

$ sed -f stock shopping1.txt

The output is as follows:

Stock status report

Product Quantity Unit_Price

Apple 200 3

Orange 200 .8

Fresh Oranges are not available in this season.

Fresh Oranges will be available from next month

Papaya 100 1.5

**

We will not be stocking this item for next few weeks.

**

Cashew 50 10

In this script, the following processing has taken place:

1. The comment line starts with the pound (#) sign.
2. The command 1i\ informs sed to insert the next text before line number 1.
3. The command /Orange/a\ informs sed to append the next text after the line

containing the Orange pattern.
4. The command /Chicken/c\ informs sed to replace the line containing the

Chicken pattern by the next line.
5. The last command, $d, tells sed to delete the last line of the input file.

Pattern Matching and Regular Expressions with sed and awk

[252]

Using awk
awk is a program, which has its own programming language for performing data
processing and to generate reports.

The GNU version of awk is gawk.

 awk processes data, which can be received from a standard input, input file, or as
the output of any other command or process.

 awk processes data similar to sed, such as lines by line. It processes every line for the
specified pattern and performs specified actions. If pattern is specified, then all the
lines containing specified patterns will be displayed. If pattern is not specified,
then the specified actions will be performed on all the lines.

The meaning of awk
The name of the program awk is made from the initials of three authors of the
language, namely Alfred Aho, Peter Weinberger and Brian Kernighan. It is not
very clear why they selected the name awk instead of kaw or wak!

Using awk
The following are different ways to use awk:

• Syntax while using only pattern:
$ awk 'pattern' filename

In this case, all the lines containing pattern will be printed.

• Syntax using only action:
$ awk '{action}' filename

In this case, action will be applied on all lines

• Syntax using pattern and action:
$ awk 'pattern {action}' filename

In this case, action will be applied on all the lines containing pattern.

As seen previously, the awk instruction consists of patterns, actions, or a combination
of both.

Chapter 12

[253]

Actions will be enclosed in curly brackets. Actions can contain many statements
separated by a semicolon or a newline.

awk commands can be on the command line or in the awk script file. The input lines
could be received from keyboard, pipe, or a file.

Input from files
Let's see a few examples by using the preceding syntax using input from files:

$ cat people.txt

The output is as follows:

Bill Thomas 8000 08/9/1968

Fred Martin 6500 22/7/1982

Julie Moore 4500 25/2/1978

Marie Jones 6000 05/8/1972

Tom Walker 7000 14/1/1977

Enter the next command as follows:

$ awk '/Martin/' people.txt

The output is as follows:

Fred Martin 6500 22/7/1982

This prints a line containing the Martin pattern.

For example:

$ cat people.txt

The output is as follows:

Bill Thomas 8000 08/9/1968

Fred Martin 6500 22/7/1982

Julie Moore 4500 25/2/1978

Marie Jones 6000 05/8/1972

Tom Walker 7000 14/1/1977

Enter the next command as follows:

$ awk '{print $1}' people.txt

Pattern Matching and Regular Expressions with sed and awk

[254]

The output is as follows:

Bill

Fred

Julie

Marie

Tom

This awk command prints the first field of all the lines from the people.txt file:

$ cat people.txt

The output is as follows:

Bill Thomas 8000 08/9/1968

Fred Martin 6500 22/7/1982

Julie Moore 4500 25/2/1978

Marie Jones 6000 05/8/1972

Tom Walker 7000 14/1/1977

For example:

$ awk '/Martin/{print $1, $2}' people.txt

Fred Martin

This prints the first and second field of the line that contains the Martin pattern.

Input from commands
We can use the output of any other Linux command as an input to the awk program.
We need to use the pipe to send an output of other command as the input to the awk
program.

The syntax is as follows:

$ command | awk 'pattern'

$ command | awk '{action}'

$ command | awk 'pattern {action}'

For example:

$ cat people.txt | awk '$3 > 6500'

Chapter 12

[255]

The output is as follows:

Bill Thomas 8000 08/9/1968

Tom Walker 7000 14/1/1977

This prints all lines, in which field 3 is greater than 6500.

For example:

$ cat people.txt | awk '/1972$/{print $1, $2}'

The output is as follows:

Marie Jones

This prints fields 1 and 2 of the lines, which ends with the 1972 pattern:

$ cat people.txt | awk '$3 > 6500 {print $1, $2}'

This prints fields 1 and 2 of the line, in which the third field is greater than 6500.

How awk works
Let's understand how the awk program processes every line. We will consider a
simple file, sample.txt:

$ cat sample.txt

Happy Birth Day

We should live every day.

Let's consider the following awk command:

$ awk '{print $1, $3}' sample.txt

The following diagram shows, how the awk will process every line in memory:

Happy Birth Day

$0

Happy Birth Day

$1 $2 $3

Pattern Matching and Regular Expressions with sed and awk

[256]

The explanation about the preceding diagram is as follows:

• awk reads a line from the file and puts it into an internal variable called $0.
Each line is called record. By default, every line is terminated by a newline.

• Then, every record or line is divided into separate words or fields. Every
word is stored in numbered variables $1, $2, and so on. There can be as
many as 100 fields per record.

• awk has an internal variable called IFS (Internal Field Separator). IFS is
normally whitespace. Whitespace includes tabs and spaces. The fields will be
separated by IFS. If we want to specify any other IFS, such as colon : in the
/etc/passwd file, then we will need to specify it in the awk command line.

When awk checks an action as '{print $1, $3}', it tells awk to print the first and
third fields. Fields will be separated by space. The command will be as follows:

$ awk '{print $1, $3}' sample.txt

The output will be as follows:

Happy Day

We live

the explanation of the output is as follows:

• There is one more internal variable called Output Field Separator (OFS).
This is normally space. This will be used for separating fields, while printing
as output.

• Once the first line is processed, awk loads the next line in $0 and it continues
as discussed earlier.

awk commands from within a file
We can put awk commands in a file. We will need to use the -f option before using
the awk script file name to inform about using the awk script file for all processing
instructions. awk will copy the first line from the data file to be processed in $0, and
then, it will apply all processing instructions on that record. Then, it will discard
that record and load the next line from the data file. This way, it will proceed till the
last line of the data file. If the action is not specified, the pattern matching lines will
be printed on screen. If the pattern is not specified, then the specified action will be
performed on all lines of the data file.

Chapter 12

[257]

For example:

$ cat people.txt
Bill Thomas 8000 08/9/1968
Fred Martin 6500 22/7/1982
Julie Moore 4500 25/2/1978
Marie Jones 6000 05/8/1972
Tom Walker 7000 14/1/1977
$ cat awk_script
/Martin/{print $1, $2}

Enter the next command as follows:

$ awk -f awk_script people.txt

The output is as follows:

Fred Martin

The awk command file contains the Martin pattern and it specifies the action of
printing fields 1 and 2 of the line, matching the pattern. Therefore, it has printed
the first and second fields of the line, containing the Martin pattern.

Records and fields
Every line terminated by the newline is called record and every word separated by
white space is called field. We will learn more about them in this section.

Records
awk does not see the file as one continuous stream of data; but it processes the file
line by line. Each line is terminated by a new line character. It copies each line in
the internal buffer called record.

The record separator
By default, a newline or carriage return is an input record separator and output
record separator. The input record separator is stored in the built-in variable RS,
and the output record separator is stored in ORS. We can modify the ORS and RS,
if required.

The $0 variable
The entire line that is copied in buffer, such as record, is called $0.

Take the following command for example:

$ cat people.txt

Pattern Matching and Regular Expressions with sed and awk

[258]

The output is as follows:

Bill Thomas 8000 08/9/1968

Fred Martin 6500 22/7/1982

Julie Moore 4500 25/2/1978

Marie Jones 6000 05/8/1972

Tom Walker 7000 14/1/1977

$ awk '{print $0}' people.txt

The output is as follows:

Bill Thomas 8000 08/9/1968

Fred Martin 6500 22/7/1982

Julie Moore 4500 25/2/1978

Marie Jones 6000 05/8/1972

Tom Walker 7000 14/1/1977

This has printed all the lines of the text file. Similar results can be seen by the
following command:

$ awk '{print}' people.txt

The NR variable
 awk has a built-in variable called NR. It stores the record number. Initially, the value
stored in NR is 1. Then, it will be incremented by one for each new record.

Take, for example, the following command:

$ cat people.txt

The output will be:

Bill Thomas 8000 08/9/1968

Fred Martin 6500 22/7/1982

Julie Moore 4500 25/2/1978

Marie Jones 6000 05/8/1972

Tom Walker 7000 14/1/1977

$ awk '{print NR, $0}' people.txt

The output will be:

1 Bill Thomas 8000 08/9/1968

2 Fred Martin 6500 22/7/1982

Chapter 12

[259]

3 Julie Moore 4500 25/2/1978

4 Marie Jones 6000 05/8/1972

5 Tom Walker 7000 14/1/1977

This has printed every record, such as $0 with record number, which is stored in NR.
That is why we see 1, 2, 3, and so on before every line of output.

Fields
Every line is called record and every word in record is called field. By default, words
or fields are separated by whitespace, that is, space or tab. awk has an internal built-in
variable called NF, which will keep track of field numbers. Typically, the maximum
field number will be 100, which will depend on implementation. The following
example has five records and four fields.

For example:

$1 $2 $3 $4

Bill Thomas 8000 08/9/1968

Fred Martin 6500 22/7/1982

Julie Moore 4500 25/2/1978

Marie Jones 6000 05/8/1972

Tom Walker 7000 14/1/1977

$ awk '{print NR, $1, $2, $4}' people.txt

The output will be:

1 Bill Thomas 08/9/1968

2 Fred Martin 22/7/1982

3 Julie Moore 25/2/1978

4 Marie Jones 05/8/1972

5 Tom Walker 14/1/1977

This has printed record number and field numbers 1, 2, and so on, on the screen.

Field separators
Every word is separated by white space. We will learn more about them in this section.

Pattern Matching and Regular Expressions with sed and awk

[260]

The input field separator
We have already discussed that input field separator is whitespace, by default.
We can change this IFS to other values on the command line or by using the BEGIN
statement. We need to use the -F option to change IFS.

For example:

$ cat people.txt

The output will be:

Bill Thomas:8000:08/9/1968

Fred Martin:6500:22/7/1982

Julie Moore:4500:25/2/1978

Marie Jones:6000:05/8/1972

Tom Walker:7000:14/1/1977

$ awk -F: '/Marie/{print $1, $2}' people.txt

The output will be:

Marie Jones 6000

We have used the -F option to specify colon (:) as IFS instead of the default, IFS.
Therefore, it has printed field 1 and 2 of the records in which the Marie pattern was
matched. We can even specify more than one IFS on the command line as follows:

$ awk –F'[:\t]' '{print $1, $2, $3}' people.txt

This will use space, colon, and tab characters as the inter field separator or IFS.

Patterns and actions
While executing commands using awk, we need to define patterns and actions.
Let's learn more about them in this section.

Patterns
 awk uses the patterns to control the processing of actions. When pattern or regular
expression is found in the record, then action is performed, or if no action is defined
then awk simply prints the line on screen.

For example:

$ cat people.txt

Chapter 12

[261]

The output will be:

Bill Thomas 8000 08/9/1968

Fred Martin 6500 22/7/1982

Julie Moore 4500 25/2/1978

Marie Jones 6000 05/8/1972

Tom Walker 7000 14/1/1977

$ awk '/Bill/' people.txt

The output will be:

Bill Thomas 8000 08/9/1968

In this example, when the Bill pattern is found in the record, that record is printed
on screen:

$ awk '$3 > 5000' people.txt

The output will be:

Bill Thomas 8000 08/9/1968

Fred Martin 6500 22/7/1982

Marie Jones 6000 05/8/1972

Tom Walker 7000 14/1/1977

In this example, when field 3 is greater than 5000, that record is printed on screen.

Actions
Actions are performed when the required pattern is found in record. Actions are
enclosed in curly brackets such as '{' and '}'. We can specify different commands in
the same curly brackets; but those should be separated by a semicolon.

The syntax is as follows:

pattern{ action statement; action statement; .. }

 or

pattern

{ action statement

 action statement

}

Pattern Matching and Regular Expressions with sed and awk

[262]

The following example gives a better idea:

$ awk '/Bill/{print $1, $2 ", Happy Birth Day !"}' people.txt

Output:

Bill Thomas, Happy Birth Day !

Whenever a record contains the Bill pattern, awk performs the action of printing
field 1, field 2 and prints the message Happy Birth Day.

Regular expressions
The regular expressions is a pattern enclosed in forward slashes. Regular expression
can contain metacharacters. If the pattern matches any string in the record, then
the condition is true and any associated action, if mentioned, will be executed. If no
action is specified, then simply the record is printed on screen.

Metacharacters used in awk regular expressions are as follows:

Metacharacter What it does
. A single character is matched
* Zero or more characters are matched
^ The beginning of the string is matched
$ The end of the string is matched
+ One or more of the characters are matched
? Zero or one of the characters are matched
[ABC] Any one character in the set of characters A, B, or C is matched
[^ABC] Any one character not in the set of characters A, B, or C is

matched
[A–Z] Any one character in the range from A to Z is matched
a|b Either a or b is matched
(AB)+ One or more sets of AB; such as AB, ABAB, and so on is matched
* A literal asterisk is matched
& This is used to represent the replacement string when it is found

in the search string

In the following example, all lines containing regular expression "Moore" will be
searched and matching record's field 1 and 2 will be displayed on screen:

$ awk '/Moore/{print $1, $2}' people.txt

Chapter 12

[263]

The output is as follows:

Julie Moore

Writing the awk script file
Whenever we need to write multiple patterns and actions in a statement, then it is
more convenient to write a script file. The script file will contain patterns and actions.
If multiple commands are on the same line, then those should be separated by a
semicolon; otherwise, we need to write them on separate lines. The comment line
will start by using the pound (#) sign.

For example:

$ cat people.txt

The output is as folllows:

Bill Thomas 8000 08/9/1968

Fred Martin 6500 22/7/1982

Julie Moore 4500 25/2/1978

Marie Jones 6000 05/8/1972

Tom Walker 7000 14/1/1977

(The awk script)

$ cat report

The output is as follows:

/Bill/{print "Birth date of " $1, $2 " is " $4}
/^Julie/{print $1, $2 " has a salary of $" $3 "."}
/Marie/{print NR, $0}

Enter the next command as follows:

$ awk -f report people.txt

The output will be:

Birth date of Bill Thomas is 08/9/1968

Julie Moore has a salary of $4500.

4 Marie Jones 6000 05/8/1972

In this example, the awk command is followed by the -f option, which specifies the
script file as record and then processes all the commands on the text file people.txt.

Pattern Matching and Regular Expressions with sed and awk

[264]

In this script, regular expression Bill is matched, then print text, field 1, field 2, and
then print the birth date information. If the regular expression Julie is matched at
the start of the line, then print her salary information. If regular expression Marie is
matched, then print the record number NR and print the complete record.

Using variables in awk
We can simply declare a variable in the awk script, without even any initialization.
Variables can be of type string, number, or floating type and so on. There is no type
declaration required like in C programming. awk will find out the type of variable
by its right-hand side data type during initialization or its usage in the script.

Uninitialized variables will have the value 0 or strings will have a value null such as
"", depending on how it is used inside scripts:

name = "Ganesh"

The variable name is of the string type:

j++

The variable j is a number. Variable j is initialized to zero and it is incremented
by one:

value = 50

The variable value is a number with initial value 50.

The technique to modify the string type variable to the number type is as follows:

name + 0

The technique to modify the number type variable to the string type is as follows:

value " "

User-defined variables can be made up of letters, digits, and underscores.
The variable cannot start with a digit.

Decision making using an if statement
In awk programming, the if statement is used for decision making. The syntax is as
follows:

if (conditional-expression)
 action1
else
 action2

Chapter 12

[265]

If the condition is true, then action1 will be performed, else action2 will be
performed. This is very similar to C programming if constructs.

An example of using the if statement in the awk command is as follows:

$ cat person.txt

The output is as follows:

Bill Thomas 8000 08/9/1968

Fred Martin 6500 22/7/1982

Julie Moore 4500 25/2/1978

Marie Jones 6000 05/8/1972

Tom Walker 7000 14/1/1977

$ awk '{

if ($3 > 7000) { print "person with salary more than 7000 is \n", $1, " "
, $2;}

}' people.txt

The output is as follows:

person with salary more than 7000 is

Bill Thomas

In this example, field 3 is checked for greater than 7000 in every record. If field 3
is greater than 7000 for any record, then the action of printing the name of the person
and value of third record will be done.

Using the for loop
The for loop is used for doing certain actions repetitively. The syntax is as follows:

for(initialization; condition; increment/decrement)

actions

Initially, a variable is initialized. Then, the condition is checked, if it is true, then
action or actions enclosed in curly brackets are performed. Then, the variable is
incremented or decremented. Again, the condition is checked. If the condition is
true, then actions are performed, otherwise, the loop is terminated.

An example of the awk command with the for loop is as follows:

$ awk '{ for(i = 1; i <= NF; i++) print NF, $i }' people.txt

Pattern Matching and Regular Expressions with sed and awk

[266]

Initially, the i variable is initialized to 1. Then, the condition is checked to see
whether i is less than NF. If true, then the action of printing NF and the field is
performed. Then i is incremented by one. Again, the condition is checked if it is
true or false. If true, then it will perform actions again; otherwise, it will terminate
the looping activity.

Using the while loop
Similar to C programming, awk has a while loop for doing the tasks repeatedly.
while will check for the condition. If the condition is true, then actions will be
performed. If condition is false, then it will terminate the loop.

The syntax is as follows:

 while(condition)

 actions

An example of using the while construct in awk is as follows:

$ cat people.txt

$ awk '{ i = 1; while (i <= NF) { print NF, $i ; i++ } }' people.txt

NF is the number of fields in the record. The variable i is initialized to 1. Then, while
i is smaller or equal to NF, the print action will be performed. The print command
will print fields from the record from the file people.txt. In the action block, i is
incremented by one. The while construct will perform the action repeatedly until i
is less than or equal to NF.

Using the do while loop
The do while loop is similar to while loop; but the difference is, even if the
condition is true, at least once the action will be performed unlike the while loop.

The syntax is as follows:

do

action

while (condition)

After the action or actions are performed, the condition is checked again. If the
condition is true, then the action will be performed again, otherwise, the loop
will be terminated.

Chapter 12

[267]

The following is an example of using the do while loop:

$ cat awk_script

BEGIN {

 do {

 ++x

 print x

 } while (x <= 4)

}

$ awk -f awk_script

1

2

3

4

5

In this example, x is incremented to 1 and value of x is printed. Then the condition
is checked to see whether x is less than or equal to 4. If the condition is true, then the
action is performed again.

Summary
In this chapter, you learned about regular expressions and about using sed and awk
for text processing. You learned various commands and usage of options along with
a lot of examples for using sed and awk. In this example, the value of x is set in the
body of the loop using the auto-increment operator. The body of the loop is executed
once and the expression is evaluated.

[269]

Index
Symbols
<< here operator

used, for data transfer 96, 97
used, for ftp usage 96, 97

-n option
used, for debugging Shell 106

<<< operator
and here string 98

? variable
using 148, 149

-v option
used, for displaying commands 107

-x option (xtrace)
used, for tracing execution 109-111

A
a command

using 245
actions, awk

defining 261, 262
address, stream editor (sed) 236
arithmetic expansion

using 124-127
arithmetic operations

declare command, using 117, 118
declared integer variables, listing 119
expr command, using 122, 123
let command, using 120, 121

arrays
creating 84
initializing 84

values, accessing 85-87
working with 84

at command
using 29

awk
about 252
actions, defining 260-262
commands, using within file 256
do while loop, using 266
field 257
for loop, using 265
if statement, used for decision making 264
input, using from commands 254, 255
input, using from files 253
patterns, defining 260
records 257
regular expressions 262
script file, writing 263
using 252
variables, using 264
while loop, using 266
working with 255, 256

B
Bash Shell

debugging options 112
bc utility

URL 129
binary arithmetic operations 128
binary file operators

options 143, 144
Bourne Shell 2

[270]

break command
used, for exiting from loop 179, 180

C
case command

used, for processing multiple
decision-making operations 161-167

c command
using 247

check list box (checklist)
creating 221

chmod command 14
command

exit status, checking 134
grouping 60
separators 59
substituting 57-59

command interpretation, Shell
about 53, 54
execution sequence 54
exit status 56, 57
internal commands, checking 55
internal commands, disabling 55

command line arguments
about 74
set command 76-78
shift 79
working with 75

command source
used, for executing functions 205

comm command 39, 40
compilation 7
conditional constructs 145
configuration file

used, for customizing dialog boxes 223
continue command

used, for exiting from current loop
iteration 177-179

CPU usages
in modes 27

crontab
using 30-32

cut command 36, 37

D
daemon process 19
data

sharing, by multiple functions 200
d command

using 238-240
debugging

prerequisites 106
process 106
set command, using 112
vi editor setting 113

declare command
using, for arithmetic operations 117, 118

default parameters 83, 84
dialog boxes

check list box (checklist), creating 221
creating, with dialog utility 213
customizing, with configuration file 223
input box (inputbox), creating 216, 217
menu box (menu), creating 219, 221
message box (msgbox), creating 214
message box (msgbox), creating with

title 214
password box, creating 218
progress meter box (gauge), creating 222
radio list box (radiolist), creating 221
textbox (textbox), creating 218
yes/no box (yesno), creating 215

dialog utility 225
diff command 35, 36
do while loop

using, in awk 266
working with 181-184

E
e command

using 243
elif command 159
else command 159
environment variables

exporting 71-73
local variable 70
working with 68-70

[271]

exec command
used, for file handling 105
used, for handling-related operations 105

exit command
using 148, 149

exit status
about 56
of commands, checking 134, 135

expr command
using, for arithmetic operations 122

F
fields, awk

about 259
field separators 259
input field separator 260

file
closing 99
command, executing 104, 105
modifying, with stream editor (sed) 237
opening 99
reading from 100, 101
reading, line by line 104
results, executing 104, 105
writing 99-101
writing, to another file 101, 102

file descriptor (fd)
about 41
assigning, to file with exec command 99
information, displaying from /proc

folder 103
read command, using 101

file handling
about 98
exec command 99
exec command, used for assigning file

descriptor(fd) to file 99
if command, using 153-155

file permissions
changing, by numeric method 14
changing, by symbolic method 14
modifying 13, 14

File Transfer Protocol (FTP) 96
floating-point arithmetic 129-131
for command

used, for looping 172-177

for loop
using, in awk 265

functions
about 191
advantages 192
arguments/arguments,

passing 196-199
data, sharing 200
defining 192-195
displaying 195
executing, in background 204
executing, with commands source 205
executing, with period (.) 205
information, returning 202, 203
library of functions, creating 205, 206
local variables, declaring 200, 201
removing 196
traps, using 211, 212
word or string, returning 204

G
gawk 252
g command

using 249
getopts 81, 82
Graphical user interface (GUI) 1
grep command

used, for pattern searching 48-50

H
hardware interrupt 207
h command

using 249
head command 34
Hello World script

writing 5, 6
here document

about 92, 93
and << operator 92, 93

here operator
and Utility ed 95, 96
using, with sort command 93
using, with wc command 94

here string
and <<< operator 98
using 98

[272]

hex arithmetic operations 128
holding buffer 249

I
i command

using 246
if command

about 159
used, for file handling 153-155
using 145-147

if construct
and multiple test commands 155-158
used, for numerical decision

making 147, 148
used, for string handling 149-151

if statement
using, in awk 264

init process 225, 226
inittab 225, 226
input box (inputbox)

creating 216, 217
interactive Shell scripts

about 89-91
read command, with options 92

internal commands, Shell
checking 55
disabling 55

Internal Field Separator (IFS)
about 188, 189, 256
and loops 188

interpreter 7
I/O redirection

about 41-44
brace expansion 45, 46
commands 43
file descriptors 41

iostat command 26-28

J
join command 37, 38

K
Kernel start-up 225, 226

L
let command

using, for arithmetic operations 120-122
library of functions

creating 205, 206
Linux

about 1, 4
boot-up sequence 17, 18
directory structure 8
loop output, redirecting to 187
system startup 225

local variable
about 70
declaring, in functions 200, 201
scope 70, 71

logical operators
about 46
about 61m 62
options 144, 145

loop
and Internal Field Separator (IFS) 188, 189
exiting, with break command 179, 180
iteration, exiting with continue

command 177-179
output, redirecting to Linux command 187
running, in background 188
using, with with for command 172-177

M
macros 32
menu box (menu)

creating 219, 221
message box (msgbox)

creating 214
metacharacters

about 44-49
using 236

monitoring tools, process
iostat command 26, 29
top command 26-28
vmstat command 26-28

multiple test commands
and if construct 156-158

[273]

N
noexec 106
nohup command

used, for running process when
logged out 212, 213

NR variable 258
null values

checking 151-153
numerical comparison operators

for test command 138-142
numerical decision making

with if constructs 147, 148

O
octal arithmetic operations 128
orphan process 19
Output Field Separator (OFS) 256

P
password box

creating 218
paste command 37
pattern

defining 260
matching, with vi editor 46-48
searching, with grep command 48-50
searching facilities, testing 48

pattern space 235
p command

using 237, 238
period (.)

used, for executing functions 205
permissions

chmod command 14
execute permission 13
read permission 13
setgid functionality 15
setuid feature 15
sticky bit 15
umask, setting 14
working with 13
write permission 13

pipes 63

positional parameters
about 81
resetting 81

process
about 17
basics 17-19
daemon process 19
managing 23-25
monitoring tools 26
monitoring, with ps command 19-23
orphan process 19
running, when logged out with nohup

command 212, 213
zombie process 19

process ID 18
progress meter box (gauge)

creating 222
ps command

used, for monitoring process 19-23

Q
q command

using 248

R
radio list box (radiolist)

creating 221
range

defining, of selected lines 241, 242
r command

using 2443
read command

related options 92
used, for reading user input 89-91

read-only variables
working with 74

records, awk
$0 variable 257
about 257
NR variable 258
record separator 257

regular expressions
about 233, 234
in awk 262

[274]

metacharacters 262
using, in stream editor (sed) 235

run levels
about 225-227
listing 227

S
s command

using 240, 241
script

running, when logged out with nohup
command 212, 213

select command
used, for implementing simple

menus 167-171
set command

about 76-78
set-n 113
used, for debugging process 112

setgid functionality 15
setuid feature 15
Shell

about 1
command interpretation 53
comparisons 2
tasks 3
working 3, 4

Shell commands
about 9-12
cat command 11, 12
echo cpmmad 12
man command 9
passwd command 9, 10

Shell scripts
advantages 7
best practices 114
limitations 7

shift
about 79, 81
positional parameters, resetting 81

signals
about 208, 209, 225
ignoring 210
listing 211
resetting 210

simple menus
implementing, with select

command 167-171
sort command

using, with here operator 93
start_kenel() function 18
step increment 240
sticky bit 15
stream editor (sed)

about 234, 235
addressing 236, 237
appending, with a command 245
changing, with c command 247
deleting, with d command 238-240
exchanging, with x command 249
file, modifying 237
file, reading with r command 244
file, writing with w command 244
getting, with g command 249
holding, with h command 249, 250
inserting, with i command 246
multiple editing, with e command 243
printing, with p command 237, 238
quitting, with q command 248
range, defining 241, 242
regular expressions, using 235
scripting 250, 251
substituting, with s command 240, 241
transforming, with y command 247, 248

string
comparison options, using with test

commands 136, 137
handling, with if construct 149-151

system initialization boot scripts 227, 228

T
table declare options 77
tail command 34
test command

about 135
file test options 142
for logical test operators 144, 145
numerical comparison operators 138-141
string comparison options 136-142
used, for file testing of binary

operators 143, 144

[275]

using, with double brackets 136
using, with single brackets 135

textbox (textbox)
creating 218

text filtering tools
about 33, 34
comm command 39, 40
cut command 36
diff command 35, 36
head command 34
join command 37, 38
paste command 37
tail command 34
tr command 40
uniq command 38, 39

top command 26-28
trap command

using 209
traps

about 207-209, 225
using, in function 211, 212

tr command 40

U
uniq command 38, 39
until command

using 186, 187
user initialization scripts

about 229
systemwide settings scripts 229
user level settings 229, 230

V
variables

about 65-68
declare command, using 66
env command, using 66
environment variables 68
read-only variables 74
set command, using 66
unset command, using 66
using, in awk 264

variable substitution
turning off 97

verbose mode 107
vi editor

commands 47
used, for learning pattern matching 46-48

vmstat command 26, 28

W
wall command

used, for sending message for logged-in
users 96

wc command
using, with here operator 94

w command
using 244

while loop
using, in awk 266

X
x command

using 249

Y
y command

using 247, 248
yes/no box (yesno)

creating 215

Z
zombie process 19

Thank you for buying
Learning Linux Shell Scripting

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Linux Shell Scripting Cookbook
Second Edition
ISBN: 978-1-78216-274-2 Paperback: 384 pages

Over 110 practical recipes to solve real-world shell
problems, guaranteed to make you wonder how you
ever lived without them

1. Master the art of crafting one-liner command
sequence to perform text processing, digging
data from files, backups to sysadmin tools, and
a lot more.

2. And if powerful text processing isn't enough,
see how to make your scripts interact with the
web-services like Twitter, Gmail.

3. Explores the possibilities with the shell in a
simple and elegant way - you will see how to
effectively solve problems in your day to day
life.

Learning Shell Scripting with Zsh
ISBN: 978-1-78328-293-7 Paperback: 132 pages

Your one-stop guide to reading, writing, and
debugging simple and complex Z shell scripts

1. A step-by-step guide that will show you how to
use zsh and its repertoire of powerful features
to improve the efficiency of your daily tasks.

2. Learn how to configure and use zsh.

3. Discover some advanced features of zsh such
as process and parameter substitution, running
on restricted functionality mode, and emulating
other shells.

Please check www.PacktPub.com for information on our titles

PowerShell
Troubleshooting Guide
ISBN: 978-1-78217-357-1 Paperback: 206 pages

Minimize debugging time and maximize
troubleshooting efficiency by leveraging the unique
features of the PowerShell language

1. Reduce troubleshooting surprises by
understanding the PowerShell language.

2. Avoid parameter passing mistakes by
using PowerShell's unique pipeline binding
capabilities.

3. Answer questions such as what, how, and
why in troubleshooting sessions by utilizing
PowerShell's various write- cmdlets.

Penetration Testing with the
Bash shell
ISBN: 978-1-84969-510-7 Paperback: 150 pages

Make the most of the Bash shell and Kali Linux's
command line based security assessment tools

1. Utilize the command line to create, run, and
execute tests.

2. Learn useful command line based information
processing utilities and unlock the problem
solving power of a Linux terminal.

3. Practical demonstrations using in-depth
explanations and screenshots to help you use
the Linux Bash terminal to tackle a collection of
common security-related problems.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started and Working with Shell Scripting
	Comparison of Shells
	Tasks done by Shell
	Working in Shell
	Learning basic Linux commands
	Our first script – Hello World
	Compiler and interpreter – difference
in process
	When not to use scripts
	Various directories
	Working more effectively with
Shell – basic commands
	Working with permissions
	Changing file permissions
	Command chmod
	Technique one – the symbolic method
	Technique two – the numeric method

	Setting umask
	Setuid
	Setgid
	Sticky bit

	Summary

	Chapter 2: Drilling Deep into Process Management, Job Control, and Automation
	Introducing process basics
	Monitoring processes using ps
	Process management
	Process monitoring tools – top, iostat, and vmstat
	Understanding "at"
	Understanding "crontab"
	Summary

	Chapter 3: Using Text Processing and Filters in Your Scripts
	Text filtering tools
	Head and tail
	The diff command
	The cut command
	The paste command
	The join command
	The uniq command
	The comm command
	The tr command

	IO redirection
	File descriptors
	Redirection
	Brace expansion

	Pattern matching with the vi editor
	Pattern searching using grep
	Summary

	Chapter 4: Working with Commands
	Learning shell interpretation of commands
	Checking and disabling Shell internal commands
	The exit status

	Command substitution
	Command separators
	Command1; command2
	Command grouping

	Logical operators
	Command1 & command2
	Command1 && command2
	Command1 || command2

	Pipes
	Summary

	Chapter 5: Exploring Expressions and Variables
	Understanding variables
	Working with environment variables
	The local variable and its scope
	Exporting variables

	Working with read-only variables
	Working with command line arguments (special variables, set and shift, getopt)
	Understanding set
	Understanding shift
	Resetting positional parameters

	Understanding getopts
	Understanding default parameters
	Working with arrays
	Creating an array and initializing it
	Accessing array values

	Summary

	Chapter 6: Neat Tricks with Shell Scripting
	Interactive Shell scripts – reading user input
	Summarizing the read command with options

	The here document and the << operator
	The here operator with the sort command
	The here operator with the wc command
	The utility ed and here operator
	A script for sending messages to all logged-in users
	Using the << here operator for FTP usage and data transfer

	Turning off variable substitution

	The here string and the <<< operator
	File handling
	Introducing file handling
	Using exec to assign file descriptor (fd) to file

	Understanding the opening, writing, and closing of a file
	Understanding reading from a file
	Understanding reading and writing to a file
	Using command read on file descriptor (fd)
	Reading from one file and writing to another file
	Displaying the file descriptor information from the /proc folder
	File handling – reading line by line
	Executing the command and storing the results in
a file

	Summarizing usage of the exec command

	Debugging
	Debugging mode – disabling the shell
(option -n)
	Debugging mode – displaying commands (option -v)
	Debugging mode – the tracing execution (option -x)
	Summarizing the debugging options for the
Bash shell

	Using the set command
	Summary of debugging options for set command
	The vi editor setting for debugging

	Good practices for Shell scripts

	Summary

	Chapter 7: Performing Arithmetic Operations in Shell Scripts
	Using a command declare for arithmetic
	Listing integers

	Using the let command for arithmetic
	Using the expr command for arithmetic
	Using an arithmetic expansion

	Binary, octal, and hex arithmetic operations
	A floating-point arithmetic
	Summary

	Chapter 8: Automating Decision Making in Scripts
	Checking the exit status of commands
	Understanding the test command
	Using the test command with single brackets
	Using the test command with double brackets
	String comparison options for the test command
	Numerical comparison operators for the test command
	File test options for the test command
	File testing binary operators
	Logical test operators

	Conditional constructs – if else
	Numerical handling if constructs
	Using the command exit and the ? variable
	String handling with the if construct
	Checking for null values
	File handling with the if command
	Multiple test commands and if constructs
	The if/elif/else command
	The null command

	Switching case
	Implementing simple menus with select
	Looping with the for command
	Exiting from the current loop iteration with the continue command
	Exiting from a loop with a break
	Working with the do while loop
	Using until
	Piping the output of a loop to a Linux command
	Running loops in the background
	The IFS and loops
	Summary

	Chapter 9: Working with Functions
	Understanding functions
	Displaying functions
	Removing functions

	Passing arguments or parameters to functions
	Sharing the data by many functions
	Declaring local variables in functions
	Returning information from functions
	Returning a word or string from a function

	Running functions in the background
	Command source and period (.)

	Creating a library of functions
	Summary

	Chapter 10: Using Advanced Functionality in Scripts
	Understanding signals and traps
	Using the trap command
	Ignoring signals
	Resetting signals
	Listing traps

	Using traps in function
	Running scripts or processes even if the user logs out
	Creating dialog boxes with the dialog utility
	Creating a message box (msgbox)
	Creating a message box (msgbox) with a title
	The yes/no box (yesno)
	The input box (inputbox)
	The textbox (textbox)
	A password box
	The menu box (menu)
	The checklist box (checklist)
	The radiolist box (radiolist)
	The progress meter box (gauge)

	Summary

	Chapter 11: System Startup and Customizing a Linux System
	System startup, inittab, and run levels
	The kernel startup and init process
	Understanding run levels
	System initialization boot scripts

	User initialization scripts
	Systemwide settings scripts
	User level settings – default files

	Summary

	Chapter 12: Pattern Matching and Regular Expressions with sed and awk
	The basics of regular expressions
	sed – noninteractive stream editor
	Understanding sed
	Understanding regular expression usage
in sed
	Addressing in sed
	How to modify a file with sed
	Printing – the p command
	Deleting – the d command
	Substitution – the s command
	Range of selected lines: the comma
	Multiple edits – the e command
	Reading from files – the r command
	Writing to files – the w command
	Appending – the a command
	Inserting – the i command
	Changing – the c command
	Transform – the y command
	Quit – the q command
	Holding and getting – the h and g commands
	Holding and exchanging – the h and x commands
	sed scripting

	Using awk
	The meaning of awk
	Using awk
	Input from commands
	How awk works
	awk commands from within a file
	Records and fields
	Records
	Fields
	Field separators

	Patterns and actions
	Patterns
	Actions

	Regular expressions
	Writing the awk script file
	Using variables in awk
	Decision making using an if statement
	Using the for loop
	Using the while loop
	Using the do while loop

	Summary

	Index

